3. ▲ .學(xué)科網(wǎng) 第4題圖 查看更多

 

題目列表(包括答案和解析)

請(qǐng)考生在第22、23、24題中任選一題做答,如果多做,則按所

做的第一題記分.做答時(shí),用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的[來源:學(xué)科網(wǎng)ZXXK]

題號(hào)涂黑.

22.選修4-1:幾何證明選講

如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,

求證:BE??BF=BC??BD

23.選修4-4:坐標(biāo)系與參數(shù)方程

在拋物線y2=4a(x+a)(a>0),設(shè)有過原點(diǎn)O作一直線分別

交拋物線于A、B兩點(diǎn),如圖所示,試求|OA|??|OB|的最小值。

24.選修4—5;不等式選講

設(shè)|a|<1,函數(shù)f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤

查看答案和解析>>

選答題(本小題滿分10分)(請(qǐng)考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號(hào)涂黑。注意所做題號(hào)必須與所涂題目的題號(hào)一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計(jì)分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙的切線,為切點(diǎn),是⊙的割線,與⊙交于兩點(diǎn),圓心的內(nèi)部,點(diǎn)的中點(diǎn)。
  
(1)證明四點(diǎn)共圓;
(2)求的大小。
23.選修4—4:坐標(biāo)系與參數(shù)方程[來源:學(xué)科網(wǎng)ZXXK]
已知直線經(jīng)過點(diǎn),傾斜角
(1)寫出直線的參數(shù)方程;
(2)設(shè)與曲線相交于兩點(diǎn),求點(diǎn)兩點(diǎn)的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式同解,而的解集為空集,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

或7                   ………………………………14分

16.(本小題滿分14分)

(1)證明:E、P分別為AC、A′C的中點(diǎn),

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

                    …………………………………………15分

(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

18.(本小題滿分15分)

(1)延長(zhǎng)BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    當(dāng)

,            

…………………………………………15分

(3)

設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

當(dāng)時(shí),,遞減;

當(dāng),,遞增. ……………………………………12分

                

    

∴不存在正整數(shù),使得

                  …………………………………………16分

,顯然成立             ……………………………………12分

當(dāng)時(shí),,

使不等式成立的自然數(shù)n恰有4個(gè)的正整數(shù)p值為3

                          ……………………………………………16分

 

 

 

 

 

 

 

泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考

高三數(shù)學(xué)試題參考答案

附加題部分

度單位.(1),,由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

D.證明:(1)因?yàn)?sub>

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,,……………………………………8分

    三式相加即得……………………………10分

22.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

(1),,

,

              ……………………………………3分

(2)平面BDD1的一個(gè)法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個(gè)法向量

∴所求的余弦值為                     ……………………………………6分

(3)設(shè)

,由

,

當(dāng)時(shí),

當(dāng)時(shí),∴   ……………………………………10分

 


同步練習(xí)冊(cè)答案