(1) 求證:當(dāng).恒成立, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)求證:當(dāng)a≥1時(shí),不等式exx-1≤對于x∈R恒成立;

(Ⅱ)對于在(0,1)中的任一個(gè)常數(shù)a,問是否存在x0>0使得ex0x0-1>成立?如果存在,求出符合條件的一個(gè)x0;否則說明理由.

查看答案和解析>>

(1)求證:當(dāng)a≥1時(shí),不等式ex-x-1≤
ax2e|x|
2
對于n∈R恒成立.
(2)對于在(0,1)中的任一個(gè)常數(shù)a,問是否存在x0>0使得ex0-x0-1≤
ax02ex0
2
成立?如果存在,求出符合條件的一個(gè)x0;否則說明理由.

查看答案和解析>>

(1)求證:當(dāng)a≥1時(shí),不等式ex-x-1≤
ax2e|x|
2
對于n∈R恒成立.
(2)對于在(0,1)中的任一個(gè)常數(shù)a,問是否存在x0>0使得ex0-x0-1≤
ax02ex0
2
成立?如果存在,求出符合條件的一個(gè)x0;否則說明理由.

查看答案和解析>>

(1)求證:當(dāng)a≥1時(shí),不等式ex-x-1≤對于n∈R恒成立.
(2)對于在(0,1)中的任一個(gè)常數(shù)a,問是否存在x>0使得ex-x-1≤成立?如果存在,求出符合條件的一個(gè)x;否則說明理由.

查看答案和解析>>

(1)求證:當(dāng)a≥1時(shí),不等式ex-x-1≤對于n∈R恒成立.
(2)對于在(0,1)中的任一個(gè)常數(shù)a,問是否存在x>0使得ex-x-1≤成立?如果存在,求出符合條件的一個(gè)x;否則說明理由.

查看答案和解析>>

第Ⅰ部分(正卷)

一、填空題:本大題共14小題,每小題5分,計(jì)70分。

1、    2、    3、對任意使    4、2    5、

6、    7、    8、8      9、        10、40

11、    12、4       13、    14、

二、解答題:本大題共6小題,計(jì)90分。解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi)。

15、解:(1)解:,

,有,

解得。                                         ……7分

(2)解法一:       ……11分

             。  ……14分

  解法二:由(1),,得

   

                                        ……10分

于是

               ……12分

代入得。            ……14分

16、證明:(1)∵

                                          ……4分

(2)令中點(diǎn)為,中點(diǎn)為,連結(jié)、

     ∵的中位線

           ……6分   

又∵

     ……8分

     ∴

     ∵為正

         ……10分

     ∴

     又∵,

 ∴四邊形為平行四邊形    ……12分

    ……14分

17、解:(1)設(shè)米,,則

                                                ……2分

                                            ……4分

                                            ……5分

(2)                   ……7分

      

     

     此時(shí)                                               ……10分

(3)∵

,                       ……11分

當(dāng)時(shí),

上遞增                       ……13分

此時(shí)                                                ……14分

答:(1)

    (2)當(dāng)的長度是4米時(shí),矩形的面積最小,最小面積為24平方米;

    (3)當(dāng)的長度是6米時(shí),矩形的面積最小,

最小面積為27平方米。                              ……15分

18、(1)解:①若直線的斜率不存在,即直線是,符合題意。   ……2分

②若直線斜率存在,設(shè)直線,即。

由題意知,圓心以已知直線的距離等于半徑2,即:,

解之得                                                  ……5分

所求直線方程是,                            ……6分

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為

                       ……8分

又直線垂直,由 ……11分

……13分

             為定值。

   故是定值,且為6。                            ……15分

19、解:(1)由題意得,                             ……2分

,    ∴    ……3分

,∴

單調(diào)增函數(shù),                                             ……5分

對于恒成立。      ……6分

(2)方程;   ∴  ……7分

     ∵,∴方程為                      ……9分

     令,,

      ∵,當(dāng)時(shí),,∴上為增函數(shù);

     時(shí),,  ∴上為減函數(shù),    ……12分

     當(dāng)時(shí),                     ……13分

,            

∴函數(shù)在同一坐標(biāo)系的大致圖象如圖所示,

∴①當(dāng),即時(shí),方程無解。

②當(dāng),即時(shí),方程有一個(gè)根。

③當(dāng),即時(shí),方程有兩個(gè)根。    ……16分

 

 

 

 

 

 

 

 

第Ⅱ部分(附加卷)

一、必做題

21、解:(1)由

同步練習(xí)冊答案