這里M= N= 查看更多

 

題目列表(包括答案和解析)

從盛滿m升純酒精的容器里倒出n(0nm)升,然后用水加滿;再倒出n升,再用水加滿.這樣連續(xù)倒了k次后,容器里還有_______升純酒精.

查看答案和解析>>

從盛滿m升純酒精的容器里倒出n(0<n<m)升,然后用水加滿;再倒出n升,再用水加滿.這樣連續(xù)倒了k次后,容器里還有_______升純酒精.

查看答案和解析>>

(1)如果口袋里裝有m個白球和n個黑球,這mn個球除顏色外完全相同,mn個人按順序依次從中摸出1球,則第k(1kmn)個人摸到白球的概率是多少?

(2)mn個鬮,其中m個分別代表m件獎品,如果mn個人按順序依次抓鬮來決定這m件獎品的歸屬,則第mn個人中獎的概率是多少?

查看答案和解析>>

定義全集U的子集M的特征函數(shù)為,這里∁UM表示集合M在全集U中的補集,已M⊆U,N⊆U,給出以下結(jié)論:
①若M⊆N,則對于任意x∈U,都有fM(x)≤fN(x);
②對于任意x∈U都有;
③對于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④對于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
則結(jié)論正確的是( )
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

定義全集U的子集M的特征函數(shù)為數(shù)學公式,這里?UM表示集合M在全集U中的補集,已M⊆U,N⊆U,給出以下結(jié)論:
①若M⊆N,則對于任意x∈U,都有fM(x)≤fN(x);
②對于任意x∈U都有數(shù)學公式
③對于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④對于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
則結(jié)論正確的是


  1. A.
    ①②③
  2. B.
    ①②④
  3. C.
    ①③④
  4. D.
    ②③④

查看答案和解析>>

一、填空題

1、        2、40    3、②  ④)    4、-1     5、    6、3

7、       8、   9、1   10、    11、    12、46    13、

14、(3)(4)

二、解答題

15、解:(1)∵ab,∴a?b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),

a?b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分

由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-,或tanα=.……………………………………………6分

∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.…………7分

(2)∵α∈(),∴

由tanα=-,求得,=2(舍去).

,…………………………………………………………12分

cos()=

              =. ………………………14分

 

16、證明:(1)連結(jié),在中,分別為,的中點,則

            

(2)

(3)

     且 

,

   即    

=

= 

 

17、解:由已知圓的方程為,

平移得到.

.

.                                                      

,且,∴.∴.

設(shè), 的中點為D.

,則,又.

的距離等于.

,           ∴.

∴直線的方程為:.      

 

18、(1)在△ADE中,y2=x2+AE2-2x?AE?cos60°y2=x2+AE2-x?AE,①

又S△ADE S△ABCa2x?AE?sin60°x?AE=2.②

②代入①得y2=x2-2(y>0), ∴y=(1≤x≤2)。。。.6分

(2)如果DE是水管y=,

當且僅當x2,即x=時“=”成立,故DE∥BC,且DE=.

如果DE是參觀線路,記f(x)=x2,可知

函數(shù)在[1,]上遞減,在[,2]上遞增,

故f(x) max=f(1)=f(2)=5.  ∴y max.

即DE為AB中線或AC中線時,DE最長.。。。。。。。。。。。8分

 

 

 

 

19、解:(1)由

是首項為,公比為的等比數(shù)列

時,, 

所以                                             

(2)由得:

(作差證明)

  

綜上所述當 時,不等式對任意都成立.

 

  20.解.(1)   

時,,此時為單調(diào)遞減

時,,此時為單調(diào)遞增

的極小值為                             

(2)的極小值,即的最小值為1

    令

    當

上單調(diào)遞減

             

時,

(3)假設(shè)存在實數(shù),使有最小值3,

①當時,由于,則

函數(shù)上的增函數(shù)

解得(舍去)                        

②當時,則當時,

此時是減函數(shù)

時,,此時是增函數(shù)

解得                                       

 

 

理科加試題

1、(1)“油罐被引爆”的事件為事件A,其對立事件為,則P()=C

P(A)=1-         答:油罐被引爆的概率為

(2)射擊次數(shù)ξ的可能取值為2,3,4,5, 

       P(ξ=2)=,   P(ξ=3)=C    ,

P(ξ=4)=C, P(ξ=5)=C      

ξ

2

3

4

5

        故ξ的分布列為:

                                                                                         

Eξ=2×+3×+4×+5×= 

 

2、解:(1)由圖形可知二次函數(shù)的圖象過點(0,0),(8,0),并且f(x)的最大值為16

,

∴函數(shù)f(x)的解析式為

(2)由

∵0≤t≤2,∴直線l1與f(x)的圖象的交點坐標為(

由定積分的幾何意義知:

 

3、解:在矩陣N=  的作用下,一個圖形變換為其繞原點逆時針旋轉(zhuǎn)得到的圖形,在矩陣M=  的作用下,一個圖形變換為與之關(guān)于直線對稱的圖形。因此

△ABC在矩陣MN作用下變換所得到的圖形與△ABC全等,從而其面積等于△ABC的面積,即為1

 

4、解:以極點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.

(1),,由

所以

的直角坐標方程.

同理的直角坐標方程.

(2)由解得

,交于點.過交點的直線的直角坐標方程為


同步練習冊答案