13. 14. 查看更多

 

題目列表(包括答案和解析)

(
1
4
)-
1
2
(
4ab-1
)
3
(0.1-2)(a3b-3)
1
2
=
 

查看答案和解析>>

(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸的長(zhǎng)等于焦距.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),若直線(xiàn)AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,證明在以MN為直徑的圓內(nèi).

查看答案和解析>>

(14分)已知函數(shù)

(Ⅰ)求的值域;

       (Ⅱ)設(shè),函數(shù).若對(duì)任意,總存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸的長(zhǎng)等于焦距.

  (Ⅰ)求橢圓的方程;

  (Ⅱ)設(shè),若直線(xiàn)AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,

求證:為鈍角.

查看答案和解析>>

(14分)已知函數(shù),( x>0).

(I)當(dāng)0<a<b,且f(a)=f(b)時(shí),求證:ab>1;

(II)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.

(III)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)?[a,b]時(shí),值域?yàn)?[ma,mb]

(m≠0),求m的取值范圍.

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點(diǎn),又中點(diǎn)。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵,     (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵, (8分)

        ∵,∴, 。

        ∴                (10分)

         

             (13分)

          (當(dāng)時(shí)取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線(xiàn)的斜率中點(diǎn)坐標(biāo)為 ,

        ∴直線(xiàn)方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當(dāng)△面積為時(shí) ,點(diǎn)到直線(xiàn)的距離為 。                   (12分)

 又圓心到直線(xiàn)的距離為,圓的半徑   

∴圓上共有兩個(gè)點(diǎn)使 △的面積為  .  (14分)

18[解] (1)乙方的實(shí)際年利潤(rùn)為:  .   (5分)

,

當(dāng)時(shí),取得最大值.

      所以乙方取得最大年利潤(rùn)的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當(dāng)時(shí),;當(dāng)時(shí),,所以時(shí),取得最大值.

    因此甲方向乙方要求賠付價(jià)格 (元/噸)時(shí),獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線(xiàn)的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當(dāng)時(shí), ,∴為減函數(shù);

   當(dāng)時(shí),,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當(dāng)時(shí),

       ∴                                                      (2分)

        ②當(dāng)時(shí),

       ∴                                                 (4分)

        ③當(dāng)時(shí),

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點(diǎn),則

                                             (4分)

       化簡(jiǎn)得:   為求。                                (6分)

       ⑵設(shè),,

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習(xí)冊(cè)答案