題目列表(包括答案和解析)
:. 甲、乙兩個(gè)水平相當(dāng)?shù)倪x手在決賽中相遇,決定采用五局三勝制,當(dāng)比賽進(jìn)行到甲對乙的比分為2︰1時(shí),因故比賽停止,乙要求比賽獎(jiǎng)金甲與乙按2︰1的比例分發(fā);你認(rèn)為這種分發(fā)方案合理嗎?請說明理由。若不合理,應(yīng)怎樣分發(fā)?
1 |
2 |
1 |
2 |
1 |
2 |
命題“若,,,則.”可以如下證明:構(gòu)造函數(shù),則,因?yàn)閷σ磺?img width=37 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/113/393513.gif">,恒有,所以,故得.
試解決下列問題:
(1)若,,,,求證;
(2)試將上述命題推廣到n個(gè)實(shí)數(shù),并證明你的結(jié)論.
如圖,長方體中,底面是正方形,是的中點(diǎn),是棱上任意一點(diǎn)。
(Ⅰ)證明: ;
(Ⅱ)如果=2 ,=,, 求 的長。
【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以面,因,所以面,又面,所以 ;
(Ⅱ)因=2 ,=,,可得,,設(shè),由得,即,解得,即 的長為。
如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本試題主要考查了立體幾何中的運(yùn)用。
(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE為等腰三角形.
取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =.
連接FG,則FG∥EC,F(xiàn)G⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小為120°
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com