(II)求到平面的距離, 查看更多

 

題目列表(包括答案和解析)

(理)已知平面內(nèi)動點P(x,y)到定點F(
5
,0)
與定直線l:x=
4
5
的距離之比是常數(shù)
5
2

( I)求動點P的軌跡C及其方程;
( II)求過點Q(2,1)且與曲線C有且僅有一個公共點的直線方程.

查看答案和解析>>

(理)已知平面內(nèi)動點P(x,y)到定點F(
5
,0)
與定直線l:x=
4
5
的距離之比是常數(shù)
5
2

( I)求動點P的軌跡C及其方程;
( II)求過點Q(2,1)且與曲線C有且僅有一個公共點的直線方程.

查看答案和解析>>

(理)已知平面內(nèi)動點P(x,y)到定點與定直線l:的距離之比是常數(shù)
( I)求動點P的軌跡C及其方程;
( II)求過點Q(2,1)且與曲線C有且僅有一個公共點的直線方程.

查看答案和解析>>

已知平面內(nèi)一動點到點的距離與點軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設與軌跡相交于點,與軌跡相交于點,求的最小值.

 

查看答案和解析>>

已知平面內(nèi)一動點到點的距離與點軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設與軌跡相交于點,與軌跡相交于點,求的最小值.

 

查看答案和解析>>

1.2. 3. 6或14   4.36   5. 2

6.6,17,28,39,40,51,62,73    7.3    8.

9.點P(x1,x2)在圓內(nèi)10.①②④11. 212.

13.14.M=N

15. 解:(1)由,得

,…………………………2分

,

, ,

于是, ,

,即.…………………………7分

(2)∵角是一個三角形的最小內(nèi)角,∴0<,,………………10分

,則(當且僅當時取=),………12分

故函數(shù)的值域為.………………………………14分

16.證明:(1)同理,

又∵       ∴平面.  …………………5分

(2)由(1)有平面

又∵平面,    ∴平面平面.………………9分

(3)連接AG并延長交CD于H,連接EH,則,

在AE上取點F使得,則,易知GF平面CDE.…………………14分

17.解:(1),                           ………3分

,,                          ………6分

    ∴。      ………8分

   (2)∵,……11分

∴當且僅當,即時,有最大值!13分

,∴取時,(元),

此時,(元)。答:第3天或第17天銷售收入最高,此時應將單價定為7元為好

18. 解:(1)設M

∵點M在MA上∴  ①……………………3分

同理可得②…………………………5分

由①②知AB的方程為…………6分

易知右焦點F()滿足③式,故AB恒過橢圓C的右焦點F()……8分

(2)把AB的方程

……………………12分

又M到AB的距離

∴△ABM的面積……………………15分

19解:(Ⅰ)  

…………………………

所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

(Ⅱ) 證明:據(jù)題意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

…………………8分

即ㄓ是鈍角三角形……………………………………..10分

(Ⅲ)假設ㄓ為等腰三角形,則只能是

 

  ①          …………………………………………..14分

而事實上,    ②

由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形..16分

20. [解]

(Ⅰ)

     … 2

故數(shù)列為等比數(shù)列,公比為3.               ………       4

(Ⅱ)

                    ………      6

所以數(shù)列是以為首項,公差為 loga3的等差數(shù)列.

                                ………     8

=1+3,且

                           

     ………      10

(Ⅲ)

      

假設第項后有

      即第項后,于是原命題等價于

        ………       15

  故數(shù)列項起滿足.       ………       16

附加題

1. 解:(Ⅰ)由條件得矩陣,

 

它的特征值為,對應的特征向量為

(Ⅱ),

橢圓的作用下的新曲線的方程為

2. 已知A是曲線ρ=3cosθ上任意一點,求點A到直線ρcosθ=1距離的最大值和最小值。

將極坐標方程轉化成直角坐標方程:

ρ=3cosθ即:x2+y2=3x,(x-)2+y2=

ρcosθ=1即x=1直線與圓相交。

所求最大值為2,最小值為0

3. 解:(Ⅰ)ξ可能的取值為0,1,2,3.

P(ξ=0)=?==P(ξ=1)=?+?=P(ξ=2)=?+?=

P(ξ=3)=?=. ξ的分布列為

ξ

0

1

2

3

P

數(shù)學期望為Eξ=1.2.

(Ⅱ)所求的概率為

p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+=

4(解:(I)如圖,取的中點,則,因為,

       所以,又平面,

       以軸建立空間坐標系,

       則,,,

,

,

,由,知,

       又,從而平面;

       (II)由,得

       設平面的法向量為,,所以

,設,則

       所以點到平面的距離

       (III)再設平面的法向量為,

       所以

,設,則,

       故,根據(jù)法向量的方向,

       可知二面角的余弦值大小為

 


同步練習冊答案