20. 查看更多

 

題目列表(包括答案和解析)

書面表達(dá)(滿分15分)
最近,你班同學(xué)就“太空探索是否值得”這一話題展開了一場(chǎng)討論。請(qǐng)你根據(jù)下表提供的信息,用英語(yǔ)寫一篇短文介紹討論的情況。

30%的同學(xué)認(rèn)為:     
70%的同學(xué)認(rèn)為:
1. 不值得探索
2. 離我們及我們的日常生活太遙遠(yuǎn)
3. 浪費(fèi)金錢。這些金錢本可用來解決地球上的饑餓、污染等問題
1. 值得探索
2. 已使用衛(wèi)星進(jìn)行通訊傳播、天氣預(yù)報(bào)
3. 有望解決地球人口問題、地球能源短缺問題
 
注意: 1. 詞數(shù):100左右;
2. 參考詞匯:短缺 shortage    太空探索 space exploration

查看答案和解析>>

書面表達(dá)(滿分15分)

最近,你班同學(xué)就“太空探索是否值得”這一話題展開了一場(chǎng)討論。請(qǐng)你根據(jù)下表提供的信息,用英語(yǔ)寫一篇短文介紹討論的情況。

30%的同學(xué)認(rèn)為:     

70%的同學(xué)認(rèn)為:

1. 不值得探索

2. 離我們及我們的日常生活太遙遠(yuǎn)

3. 浪費(fèi)金錢。這些金錢本可用來解決地球上的饑餓、污染等問題

1. 值得探索

2. 已使用衛(wèi)星進(jìn)行通訊傳播、天氣預(yù)報(bào)

3. 有望解決地球人口問題、地球能源短缺問題

 

注意: 1. 詞數(shù):100左右;

2. 參考詞匯:短缺 shortage    太空探索 space exploration

 

查看答案和解析>>

書面表達(dá)(滿分15分)
下圖反映的是網(wǎng)絡(luò)時(shí)代所出現(xiàn)的一種問題,有些孩子沉溺于網(wǎng)上交流而忽視了與父母的溝通。請(qǐng)你根據(jù)對(duì)該漫畫的理解用英語(yǔ)寫一篇短文。該文應(yīng)包含以下要點(diǎn):
1. 該漫畫告訴了我們什么;
2. 你對(duì)此現(xiàn)象的看法;
3. 我們?cè)撊绾沃鲃?dòng)和父母親溝通。
注意:
1. 表達(dá)時(shí)要適當(dāng)發(fā)揮想象,不要僅作簡(jiǎn)單描述。
2. 詞數(shù)100左右。開頭已經(jīng)寫好,不計(jì)入總詞數(shù)。
3. 文中不得提及本人的相關(guān)信息。
參考詞匯:漫畫caricature
Modern technology has many advantages. While we enjoy the fun and convenience of the Internet, we also experience some new problems. This caricature describes one of them.___________
______________________________________________________________________________________________________________________________________________________

查看答案和解析>>

書面表達(dá)。M分15分)

北京是中國(guó)的首都,也是一個(gè)有著悠久歷史的城市,每年都會(huì)吸引世界各地的大批游客來此觀光。請(qǐng)依據(jù)以下要點(diǎn)以Beijing 為題用英語(yǔ)寫一篇介紹北京的短文。

地理位置:中國(guó)北部;

面積:1萬6千多平方公里;

人口:大約1695萬;

氣候:夏季炎熱多雨,冬季寒冷干燥,春、秋短促;

基本情況:是中國(guó)文化、教育、商業(yè)中心;有很多重大活動(dòng)在此舉行,最著名的是2008的奧運(yùn)會(huì);有悠久的歷史和豐富的旅游資源,最著名的名勝古跡有故宮 (the Imperial Palace),天壇 (the Temple of Heaven),頤和園,長(zhǎng)城等。

注意:

詞數(shù):100左右;

不要逐條翻譯,可適當(dāng)增加細(xì)節(jié),以使行文連貫流暢;

查看答案和解析>>

書面表達(dá)(本題有1小題,滿分15分)

假設(shè)你叫李華,是學(xué)校英語(yǔ)報(bào)“Share with You”欄目的編輯。你收到一封讀者來信。請(qǐng)仔細(xì)閱讀此信,并根據(jù)所給信息,結(jié)合自己的學(xué)習(xí)經(jīng)驗(yàn),寫一封回信。

Tips

be active in English classes

watch English programs

read English texts aloud

listen to English tapes

注意:(1)回信可參考上述要點(diǎn),并適當(dāng)增加細(xì)節(jié),以使行文連貫。

     (2)詞數(shù):100左右。信的開頭和結(jié)尾已給出,不計(jì)入總詞數(shù)。

April 10th, 2010

Puzzled,

    Thank you for your letter. You asked me about how to improve your listening and spoken English. Here are some tips for you.                                            

________________________________________________________________________________

Best wishes!

                                                               Yours,

                                                               Li Hua

查看答案和解析>>

1.C   2.A   3.B   4.D   5.C   6.B   7.D   8.C   9.B  10.A

  11.120°   12.3x+y-1=0   13.   14.10    15.100    16.(1),(4)

17.解:(1)設(shè)拋物線,將(2,2)代入,得p=1. …………4分

∴y2=2x為所求的拋物線的方程.………………………………………………………5分

(2)聯(lián)立 消去y,得到. ………………………………7分

設(shè)AB的中點(diǎn)為,則

∴ 點(diǎn)到準(zhǔn)線l的距離.…………………………………9分

,…………………………11分

,故以AB為直徑的圓與準(zhǔn)線l相切.…………………… 12分

(注:本題第(2)也可用拋物線的定義法證明)

18.解:(1)在△ACF中,,即.………………………………5分

.又,∴.…………………… 7分

(2)

. ……………………………14分

(注:用坐標(biāo)法證明,同樣給分)

19.

解法一:(1)連OM,作OH⊥SM于H.

∵SM為斜高,∴M為BC的中點(diǎn),∴BC⊥OM.

∵BC⊥SM,∴BC⊥平面SMO.

又OH⊥SM,∴OH⊥平面SBC.……… 2分

由題意,得

設(shè)SM=x,

,解之,即.………………… 5分

(2)設(shè)面EBC∩SD=F,取AD中點(diǎn)N,連SN,設(shè)SN∩EF=Q.

∵AD∥BC,∴AD∥面BEFC.而面SAD∩面BEFC=EF,∴AD∥EF.

又AD⊥SN,AD⊥NM,AD⊥面SMN.

從而EF⊥面SMN,∴EF⊥QS,且EF⊥QM.

∴∠SQM為所求二面角的平面角,記為α.……… 7分

由平幾知識(shí),得

,∴

,即所求二面角為. ……………… 10分

(3)存在一點(diǎn)P,使得OP⊥平面EBC.取SD的中點(diǎn)F,連FC,可得梯形EFCB,

取AD的中點(diǎn)G,連SG,GM,得等腰三角形SGM,O為GM的中點(diǎn),

設(shè)SG∩EF=H,則H是EF的中點(diǎn).

連HM,則HM為平面EFCB與平面SGM的交線.

又∵BC⊥SO,BC⊥GM,∴平面EFCB⊥平面SGM. …………… 12分

在平面SGM中,過O作OQ⊥HM,由兩平面垂直的性質(zhì),可知OQ⊥平面EFCB.

而OQ平面SOM,在平面SOM中,延長(zhǎng)OQ必與SM相交于一點(diǎn),

故存在一點(diǎn)P,使得OP⊥平面EBC. ……………………… 14分

 

∵底面邊長(zhǎng)為1,∴,

,,

.    ……………… 1分

設(shè),

平面SBC的一個(gè)法向量,

,

,

∴y=2h,n=(0,2h,1).… 3分

=(0,1,0),由題意,得.解得

∴斜高. …………………………………………………… 5分

(2)n=(0,2h,1)=,

由對(duì)稱性,面SAD的一個(gè)法向量為n1. ………………………………6分

設(shè)平面EBC的一個(gè)法向量n2=(x,y,1),由

,得

 解得.………………… 8分

設(shè)所求的銳二面角為α,則

,∴.…………… 10分

(3)存在滿足題意的點(diǎn).證明如下:

. ………………………… 11分

,令與n2共線,則. ……………… 13分

.故存在P∈SM,使OP⊥面EBC.……………………… 14分

20. 解:(1)當(dāng)n為奇數(shù)時(shí),an≥a,于是,. ………………3分

         當(dāng)n為偶數(shù)時(shí),a-1≥1,且an≥a2,于是

=. …………6分

(2)∵,,,∴公比.……9分

. …………………………………………10分

(注:如用求和公式,漏掉q=1的討論,扣1分)

 . ……………12分

.……15分21.解:(1)∵,∴,∴. 1分

,即,∴. …3分

①當(dāng),即時(shí),上式不成立.………………………………………………4分

②當(dāng),即時(shí),.由條件,得到

,解得. ……………………………………………5分

,解得.…………………………………………6分

 m的取值范圍是. ………………………………………7分

(2)有一個(gè)實(shí)根.………………………………………………………………………………9分

,即

,則

,,. ………………………10分

 △>0,故有相異兩實(shí)根

,∴ 顯然,,

,∴,∴. …………12分

于是

                    

為三次函數(shù)的極小值點(diǎn),故與x軸只有一個(gè)交點(diǎn).

∴  方程只有一個(gè)實(shí)根.…………………………15分


同步練習(xí)冊(cè)答案