題目列表(包括答案和解析)
在中,,分別是角所對(duì)邊的長,,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵∴∴的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴
解:(1) ………………2分
又∵∴ ……………………4分
∴的面積為 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴ ……………………12分
另解:由正弦定理得: ∴ 又 ∴
已知在中,,,,解這個(gè)三角形;
【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又
又再又得到c。
解:由正弦定理得到:
又 ……4分
又 ……8分
又
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以首項(xiàng)為1,公比為的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由。
(3)設(shè)函數(shù)為上偶函數(shù),當(dāng)時(shí),又函數(shù)圖象關(guān)于直線對(duì)稱, 當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍。
設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().
(1) 當(dāng)時(shí),試寫出拋物線上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得
;
(2)當(dāng)時(shí),若,
求證:;
(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:
① 試構(gòu)造一個(gè)說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評(píng)分說明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.
由拋物線定義得到
第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
第三問中①取時(shí),拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,
故可取滿足條件.
(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
;
所以.
(3) ①取時(shí),拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)
② 設(shè),分別過作
拋物線的準(zhǔn)線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)()滿足 ”,即:
“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo)()滿足,則”.此命題為真.事實(shí)上,設(shè),
分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:
“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)
在棱長為的正方體中,是線段的中點(diǎn),.
(1) 求證:^;
(2) 求證://平面;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。
第三問中,是邊長為的正三角形,其面積為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,
所以是直角三角形,其面積為,
同理的面積為, 面積為. 所以三棱錐的表面積為.
解: (1)證明:根據(jù)正方體的性質(zhì),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,
所以,又,所以,,
所以^. ………………4分
(2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,
所以為平行四邊形,因此,
由于是線段的中點(diǎn),所以, …………6分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">面,平面,所以∥平面. ……………8分
(3)是邊長為的正三角形,其面積為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,
所以是直角三角形,其面積為,
同理的面積為, ……………………10分
面積為. 所以三棱錐的表面積為
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com