11.2n-10 12. 13.-2 14. 15.①③④ 查看更多

 

題目列表(包括答案和解析)

如下數(shù)表,為一組等式:
                        s1=1,
                    s2=2+3=5,
                  s3=4+5+6=15,
               s4=7+8+9+10=34,
           s5=11+12+13+14+15=65,

某學(xué)生根據(jù)上表猜測(cè)S2n-1=(2n-1)(an2+bn+c),老師回答正確,則a+b+c=
1
1

查看答案和解析>>

設(shè)[x]表示不超過(guò)x的最大整數(shù),如[
5
]=2,[π]=3,[k]=k(k∈N*).我們發(fā)現(xiàn):
[
1
]+[
2
]+[
3
]=3;
[
4
]+[
5
]+[
6
]+[
7
]+[
8
]=10;
[
9
]+[
10
]+[
11
]+[
12
]+[
13
]+[
14
]+[
15
]=21;

通過(guò)合情推理,寫出一般性的結(jié)論:
[
n2
]+[
n2+1
]+[
n2+2
]+…+[
(n+1)2-1
]
=n(2n+1)(n∈N*
[
n2
]+[
n2+1
]+[
n2+2
]+…+[
(n+1)2-1
]
=n(2n+1)(n∈N*
(用含n的式子表示).

查看答案和解析>>

下列數(shù)表為一組等式,如果能夠猜測(cè)S2n-1=(2n-1)(an2+bn+c),則3a+b=
 

       s1=1,
     s2=2+3=5,
   s3=4+5+6=15,
 s4=7+8+9+10=34,
s5=11+12+13+14+15=65.

查看答案和解析>>

已知等比數(shù){an},a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個(gè)正整數(shù),得到數(shù)列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2013項(xiàng)之和S2013=
2007050
2007050
(用數(shù)字作答).

查看答案和解析>>

已知等比數(shù){an},a1=1,a4=8,在an與an+1兩項(xiàng)之間依次插入2n-1個(gè)正整數(shù),得到數(shù)列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…則數(shù)列{bn}的前2013項(xiàng)之和S2013=______(用數(shù)字作答).

查看答案和解析>>


同步練習(xí)冊(cè)答案