[方法點撥]在選擇圖象時.應抓住起始錢數(shù)為100元.然后隨著時間推移逐步增加.到1年時總錢數(shù)變?yōu)?02.25元.確定好圖象后.根據(jù)圖象中的數(shù)據(jù).利用待定系數(shù)法.容易求一次函數(shù)解析式. 查看更多

 

題目列表(包括答案和解析)

)如圖,甲、乙兩個可以自由轉(zhuǎn)動的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應的數(shù)字,同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時,重轉(zhuǎn)一次,直到指針都指向一個區(qū)域為止).
【小題1】請你用畫樹狀圖或列表格的方法求出|m+n|>1的概率;
【小題2】直接寫出點(m,n)落在函數(shù)圖象上的概率.

查看答案和解析>>

如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為y(當指針指在邊界線上時,重轉(zhuǎn)一次,直到指針指向一個區(qū)域為止).

(1)請你用畫樹狀圖或列表格的方法,求出點(xy)落在第二象限內(nèi)的概率;

(2)直接寫出點(x,y)落在函數(shù)圖象上的概率.

【解析】通過樹狀圖或列表,列舉出所有情況,再計算概率即可.

 

查看答案和解析>>

如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為y(當指針指在邊界線上時,重轉(zhuǎn)一次,直到指針指向一個區(qū)域為止).

(1)請你用畫樹狀圖或列表格的方法,求出點(xy)落在第二象限內(nèi)的概率;

(2)直接寫出點(x,y)落在函數(shù)圖象上的概率.

【解析】通過樹狀圖或列表,列舉出所有情況,再計算概率即可.

 

查看答案和解析>>

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有小.他們該怎樣排隊才能使得總的排隊時間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結(jié):
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數(shù)學問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學思想就叫做局部調(diào)整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構(gòu)成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

【閱讀理解】
課外興趣小組活動時,老師提出了如下問題:

如圖1,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB的理由是
B
B

A.SSS      B.SAS      C.AAS        D.HL
(2)求得AD的取值范圍是
C
C

A.6<AD<8   B.6≤AD≤8  C.1<AD<7  D.1≤AD≤7
【感悟】
解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.
【問題解決】
(3)如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF. 求證:AC=BF.

查看答案和解析>>


同步練習冊答案