在上是增函數 ------6分 查看更多

 

題目列表(包括答案和解析)

設函數f(x)=
(x-a)2x

(I)證明:0<a<1是函數f(x)在區(qū)間(1,2)上遞增的充分而不必要的條件;
(II)若x∈(-∞,0)時,滿足f(x)<2a2-6恒成立,求實數a的取值范圍.

查看答案和解析>>

把函數的圖象按向量平移得到函數的圖象. 

(1)求函數的解析式; (2)若,證明:.

【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結論。第二問中,令,然后求導,利用最小值大于零得到。

(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調遞增.……10分

,即

 

查看答案和解析>>

設函數數學公式
(I)證明:0<a<1是函數f(x)在區(qū)間(1,2)上遞增的充分而不必要的條件;
(II)若x∈(-∞,0)時,滿足f(x)<2a2-6恒成立,求實數a的取值范圍.

查看答案和解析>>

設函數f(x)=
(x-a)2
x

(I)證明:0<a<1是函數f(x)在區(qū)間(1,2)上遞增的充分而不必要的條件;
(II)若x∈(-∞,0)時,滿足f(x)<2a2-6恒成立,求實數a的取值范圍.

查看答案和解析>>

設函數
(I)證明:0<a<1是函數f(x)在區(qū)間(1,2)上遞增的充分而不必要的條件;
(II)若x∈(﹣∞,0)時,滿足f(x)<2a2﹣6恒成立,求實數a的取值范圍.

查看答案和解析>>


同步練習冊答案