又當(dāng)時(shí).存在.滿足條件.所以的最大值為. -----14分 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

(2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列,試寫出數(shù)列的通項(xiàng)公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說明理由.

【解析】第一問中解:由,,

又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

此時(shí)也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質(zhì)得:

(i)當(dāng)時(shí),;

(ii) 當(dāng)時(shí),,

所以

第三問假設(shè)存在正整數(shù)n滿足條件,則,

則(i)當(dāng)時(shí),

,

 

查看答案和解析>>


同步練習(xí)冊(cè)答案