題目列表(包括答案和解析)
已知=,= ,=,設(shè)是直線上一點(diǎn),是坐標(biāo)原點(diǎn).
⑴求使取最小值時(shí)的; ⑵對(duì)(1)中的點(diǎn),求的余弦值.
【解析】第一問中利用設(shè),則根據(jù)已知條件,O,M,P三點(diǎn)共線,則可以得到x=2y,然后利用
可知當(dāng)x=4,y=2時(shí)取得最小值。
第二問中利用數(shù)量積的性質(zhì)可以表示夾角的余弦值,進(jìn)而得到結(jié)論。
(1)、因?yàn)樵O(shè)則
可知當(dāng)x=4,y=2時(shí)取得最小值。此時(shí)。
(2)
材料:為了美化環(huán)境,某房地產(chǎn)公司打算在所管轄的一個(gè)居民小區(qū)內(nèi)的一塊半圓形空地上,劃出一個(gè)內(nèi)接矩形辟為綠地,且使矩形的一邊落在半圓的直徑上,而另外兩個(gè)頂點(diǎn)在半圓的圓周上,已知半圓的半徑為30米.為了使綠地的面積最大,該公司請(qǐng)了本公司的一位設(shè)計(jì)師,設(shè)計(jì)出了這個(gè)半圓內(nèi)接矩形的長與寬的關(guān)系.該設(shè)計(jì)師的計(jì)算過程如下:
如下圖,設(shè)CD=x,則OD=,矩形的面積設(shè)為S,則
S=2x·=.
所以當(dāng)x2=450,即x=時(shí),S有最大值,即此時(shí)矩形的面積最大.
問題:現(xiàn)在我們已經(jīng)學(xué)習(xí)了三角函數(shù)的有關(guān)知識(shí),利用三角函數(shù)的知識(shí)該如何解決這一問題?
設(shè)A是如下形式的2行3列的數(shù)表,
a |
b |
c |
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記為中的最小值。
(1)對(duì)如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。
【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image007.png">,,所以
(2),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image006.png">,所以,
所以
當(dāng)d=0時(shí),取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個(gè)數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設(shè),,
由得定義知,,,,
從而
所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1
【考點(diǎn)定位】此題作為壓軸題難度較大,考查學(xué)生分析問題解決問題的能力,考查學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力
π |
2 |
T |
S |
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值
于是對(duì)一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com