[解](Ⅰ) 由題意, 查看更多

 

題目列表(包括答案和解析)

必做題】本題滿分10分.解答時應寫出文字說明、證明過程或演算步驟.

由數(shù)字1,2,3,4組成五位數(shù),從中任取一個.

(1)求取出的數(shù)滿足條件:“對任意的正整數(shù),至少存在另一個正整數(shù)

,且,使得”的概率;

(2)記為組成該數(shù)的相同數(shù)字的個數(shù)的最大值,求的概率分布列和數(shù)學期望.

 

查看答案和解析>>

.【必做題】本題滿分10分.解答時應寫出文字說明、證明過程或演算步驟.
由數(shù)字1,2,3,4組成五位數(shù),從中任取一個.
(1)求取出的數(shù)滿足條件:“對任意的正整數(shù),至少存在另一個正整數(shù)
,且,使得”的概率;
(2)記為組成該數(shù)的相同數(shù)字的個數(shù)的最大值,求的概率分布列和數(shù)學期望.

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,5分

     ……………6分

(Ⅱ)∵,,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

已知,分別為三個內(nèi)角,,的對邊,.

(Ⅰ)求;

(Ⅱ)若=2,的面積為,求.

【命題意圖】本題主要考查正余弦定理應用,是簡單題.

【解析】(Ⅰ)由及正弦定理得

   

由于,所以,

,故.

(Ⅱ) 的面積==,故=4,

 故=8,解得=2

 

查看答案和解析>>

已知函數(shù)=.

(Ⅰ)當時,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范圍.

【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

【解析】(Ⅰ)當時,=,

≤2時,由≥3得,解得≤1;

當2<<3時,≥3,無解;

≥3時,由≥3得≥3,解得≥8,

≥3的解集為{|≤1或≥8};

(Ⅱ) ,

∈[1,2]時,==2,

,有條件得,即,

故滿足條件的的取值范圍為[-3,0]

 

查看答案和解析>>


同步練習冊答案