19解:(1)由..得.代入橢圓方程.得.或.軸.或 ------------------ 5分 查看更多

 

題目列表(包括答案和解析)

如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點.

(1)求圓錐體的體積;

(2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

第一問中,由題意,,故

從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.

由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

解:(1)由題意,

從而體積.

(2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.

由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

已知數(shù)列滿足,

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項和前n項和

【解析】第一問中,利用,得到從而得證

第二問中,利用∴ ∴分組求和法得到結(jié)論。

解:(1)由題得 ………4分

                    ……………………5分

   ∴數(shù)列是以2為公比,2為首項的等比數(shù)列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知函數(shù),

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

【解析】第一問中,利用由 即

第二問中,得:

,

第三問中,由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2),得:

,

(3)由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時,

當命題p為假,命題q為真時,,

所以

 

查看答案和解析>>


同步練習冊答案