題目列表(包括答案和解析)
已知函數在區(qū)間[0,1]單調遞增,在區(qū)間[1,2)單調遞減.
(1)求a的值;
(2)若點在函數f(x)的圖象上,求證點A關于直線x=1的對稱點B也在函數f(x)的圖象上;
(3)是否存在實數b,使得函數g(x)=bx2-1的圖象與函數f(x)的圖象恰有3個交點,若存在,請求出實數b的值;若不存在,試說明理由.
π |
3 |
| ||
3 |
π |
4 |
π |
8 |
3π |
8 |
2 |
π |
8 |
3 |
π |
4 |
5π |
6 |
①h(x)的圖象關于原點(0,0)對稱;
②h(x)的圖象關于y軸對稱;
③h(x)的最小值為0;
④h(x)在區(qū)間(-1,0)上單調遞增.
其中正確的命題是__________________.(把正確命題的序號都填上)
對于函數,有下列論斷:
①函數的圖象關于直線對稱;
②函數的圖象關于點對稱;
③函數的最小正周期為;
④函數在區(qū)間上是單調增函數.
以其中兩個論斷作為條件,其余兩個作為結論,寫出你認為正確一個命題: ▲ .
(填序號即可,形式:)
一、選擇題:本大題共12小題,每小題5分,共60分。
CABD CDDC BABD
二、填空題:本大題共4小題,每小題4分,共16分。
13.3 14.1200 15. 16.
三、解答題:本大題共6小題,共74分。
17.解: 1分
∵,∴⊥,∴∠
在Rt△ADC中 4分
∴ 6分
∵ 7分
又∵ 9分
∴
12分
18.解:(1)當=7時,甲贏意味著“第七次甲贏,前6次贏5次,但根據規(guī)則,前5次中必輸1次”,由規(guī)則,每次甲贏或乙贏的概率均為,因此
= 4分
(2)設游戲終止時骰子向上的點數是奇數出現的次數為,向上的點數是偶數出現的次數為n,則由,可得:當
或,時,當,或因此的可能取值是5、7、9 6分
每次投擲甲贏得乙一個福娃與乙贏得甲一個福娃的可能性相同,其概率都是
10分
所以的分布列是:
5
7
9
12分
19.解:設數列的公比為
(1)若,則
顯然不成等差數列,與題設條件矛盾,所以≠1 1分
由成等差數列,得
化簡得 4分
∴ 5分
(2)解法1: 6分
當≥2時,
10分
=1+ 12分
解法2: 6分
當≥2時,設這里,為待定常數。
則
當n≥2時,易知數列為單調遞增數列,所以
可見,n≥2時,
于是,n≥2時,有 10分
=1+ 12分
20.解法一:如圖建立空間直角坐標系,
(1)有條件知 1分
由面⊥面ABC,AA1⊥A
∵ ……………3分
∴與不垂直,即AA1與BC不垂直,
∴AA1與平面A1BC不垂直……5分
(2)由ACC
知==…7分
設平面BB
由
令,則 9分
另外,平面ABC的法向量(0,0,1) 10分
所以側面BB
解法二:(1)取AC中點D,連結A1D,則A1D⊥AC。
又∵側面ACC
∵A1D⊥面ABC ………2分
∴A1D⊥BC。
假設AA1與平面A1BC垂直,則A1D⊥BC。
又A1D⊥BC,由線面垂直的判定定理,
BC⊥面A
有兩個直角,與三角形內角和定理矛盾。假設不
成立,所以AA1不與平面A1BC垂直………5分
(2)側面BB
過點C作A
過點E作B
因為B
所以∠CFE即為所求側面BB
由得
在Rt△ABC中,cos∠
所以,側面BB
21.(1)設與在公共點處的切線相同。
。由題意知
即 2分
解得或(舍去,) 4分
可見 7分
(2)
要使在(0,4)上單調,
須在(0,4)上恒成立 8分
在(0,4)上恒成立在(0,4)上恒成立。
而且可為足夠小的正數,必有 9分
在(0,4)上恒成立
或 11分
綜上,所求的取值范圍為,或,或 12分
22.(1)∵點A的坐標為()
∴,橢圓方程為 ①…1分
又∵,且BC過橢圓M的中心
(0,0),∴ ……2分
又∵∴△AOC是以∠C為直角的等腰三角形,
易得C點坐標為(,) ……3分
將(,)代入①式得
∴橢圓M的方程為 ……4分
(2)當直線的斜率,直線的方程為
則滿足題意的t的取值范圍為……5分
當直線的斜率≠0時,設直線的方程為
由得 6分
∵直線與橢圓M交于兩點P、Q,
∴△=
即 ② 8分
設P(x1,y1),Q(x2,y2),PQ中點,則
的橫坐標,縱坐標,
D點的坐標為(0,-2)
由,得⊥,,
即即。 ③ 11分
∴∴。 ④
由②③得,結合④得到 13分
綜上所述, 14分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com