所以.又所以AB⊥面PCC1又因?yàn)镸N∥AB.因此MN⊥面PCC1.所以面PCC1⊥面MNQ, (2)連接P B1交MN于點(diǎn)K.連接KQ.易證QK∥PC1所以PC1∥面MNQ. 查看更多

 

題目列表(包括答案和解析)

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線(xiàn)面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線(xiàn)為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

如圖,因?yàn)锳B∥CD,所以∠1=∠2,又因?yàn)椤?+∠3=180°,所以∠1+∠3=180°.所用的推理規(guī)則為( 。

查看答案和解析>>

如圖,在四棱錐中,⊥底面,底面為正方形,,分別是,的中點(diǎn).

(I)求證:平面;

(II)求證:

(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.

【解析】第一問(wèn)利用線(xiàn)面平行的判定定理,,得到

第二問(wèn)中,利用,所以

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,,從而得

第三問(wèn)中,借助于等體積法來(lái)求解三棱錐B-EFC的體積.

(Ⅰ)證明: 分別是的中點(diǎn),    

,.       …4分

(Ⅱ)證明:四邊形為正方形,

, ,

,.    ………8分

(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

 

查看答案和解析>>

在數(shù)學(xué)證明中,①假言推理、②三段論推理、③傳遞關(guān)系推理、④完全歸納推理,是經(jīng)常使用的四種演繹推理,下面推理過(guò)程使用到上述推理規(guī)則中的(     )如(右圖)

因?yàn)閘AB,所以又因?yàn)锳B//CD,所以

 所以

A. ①②③        B.②③④

C. ②③          D.①②③④

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線(xiàn)的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線(xiàn)l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線(xiàn)l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線(xiàn)的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線(xiàn)l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線(xiàn)OC斜率為1,由此設(shè)直線(xiàn)l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線(xiàn)l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線(xiàn)l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊(cè)答案