所以.定義域?yàn)椋? 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)定義域?yàn)镽的函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分圖象如圖所示,求:
(1)f(x)的表達(dá)式;
(2)f(x)的單調(diào)增區(qū)間;
(3)f(x)的對(duì)稱軸和對(duì)稱中心;
(4)f(x)的最小值以及取得最小值時(shí)的x的集合.

查看答案和解析>>

定義域和值域均為[-a,a](常數(shù)a>0)的函數(shù)y=f(x)和y=g(x)的圖象如圖所示:
現(xiàn)有以下命題:
(1)方程f[g(x)]=0有且僅有三個(gè)解;
(2)方程g[f(x)]=0有且僅有三個(gè)解;
(3)方程g[g(x)]=0有且僅有一個(gè)解;
(4)方程f[f(x)]=0有且僅有九個(gè)解.
則其中正確的命題是(  )

查看答案和解析>>

設(shè)定義域?yàn)閇x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個(gè)端點(diǎn)分別為A、B,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是C上任意一點(diǎn),向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|
MN
|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:
①A、B、N三點(diǎn)共線;
②直線MN的方向向量可以為
a
=(0,1);
③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;
④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)
5
4
下線性近似”.
其中所有正確結(jié)論的番號(hào)為______.

查看答案和解析>>

設(shè)定義域?yàn)閇x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個(gè)端點(diǎn)分別為A、B,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是C上任意一點(diǎn),向量=(x1,y1),=(x2,y2),=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量+(1-λ),現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指||≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:
①A、B、N三點(diǎn)共線;
②直線MN的方向向量可以為=(0,1);
③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;
④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)下線性近似”.
其中所有正確結(jié)論的番號(hào)為   

查看答案和解析>>

設(shè)定義域?yàn)閇x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個(gè)端點(diǎn)分別為A、B,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是C上任意一點(diǎn),向量=(x1,y1),=(x2,y2),=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量+(1-λ),現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指||≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:
①A、B、N三點(diǎn)共線;
②直線MN的方向向量可以為=(0,1);
③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;
④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)下線性近似”.
其中所有正確結(jié)論的番號(hào)為   

查看答案和解析>>


同步練習(xí)冊(cè)答案