.所以命題得證 查看更多

 

題目列表(包括答案和解析)

某同學將命題“在等差數(shù)列{an}中,若p+m=2n,則有ap+am=2an(p,m,n∈N*)”改寫成:“在等差數(shù)列{an}中,若1×p+1×m=2×n,則有1×ap+1×am=2×an(p,m,n∈N*)”,進而猜想:“在等差數(shù)列{an}中,若2p+3m=5n,則有2ap+3am=5an(p,m,n∈N*).”
(1)請你判斷以上同學的猜想是否正確,并說明理由;
(2)請你提出一個更一般的命題,使得上面這位同學猜想的命題是你所提出命題的特例,并給予證明.
(3)請類比(2)中所提出的命題,對于等比數(shù)列{bn},請你寫出相應的命題,并給予證明.

查看答案和解析>>

某同學將命題“在等差數(shù)列{an}中,若p+m=2n,則有ap+am=2an(p,m,n∈N*)”改寫成:“在等差數(shù)列{an}中,若1×p+1×m=2×n,則有1×ap+1×am=2×an(p,m,n∈N*)”,進而猜想:“在等差數(shù)列{an}中,若2p+3m=5n,則有2ap+3am=5an(p,m,n∈N*).”
(1)請你判斷以上同學的猜想是否正確,并說明理由;
(2)請你提出一個更一般的命題,使得上面這位同學猜想的命題是你所提出命題的特例,并給予證明.
(3)請類比(2)中所提出的命題,對于等比數(shù)列{bn},請你寫出相應的命題,并給予證明.

查看答案和解析>>

某同學將命題“在等差數(shù)列{an}中,若p+m=2n,則有ap+am=2an(p,m,n∈N*)”改寫成:“在等差數(shù)列{an}中,若1×p+1×m=2×n,則有1×ap+1×am=2×an(p,m,n∈N*)”,進而猜想:“在等差數(shù)列{an}中,若2p+3m=5n,則有2ap+3am=5an(p,m,n∈N*).”
(1)請你判斷以上同學的猜想是否正確,并說明理由;
(2)請你提出一個更一般的命題,使得上面這位同學猜想的命題是你所提出命題的特例,并給予證明.
(3)請類比(2)中所提出的命題,對于等比數(shù)列{bn},請你寫出相應的命題,并給予證明.

查看答案和解析>>

(2011•浦東新區(qū)三模)某同學將命題“在等差數(shù)列{an}中,若p+m=2n,則有ap+am=2an(p,m,n∈N*)”改寫成:“在等差數(shù)列{an}中,若1×p+1×m=2×n,則有1×ap+1×am=2×an(p,m,n∈N*)”,進而猜想:“在等差數(shù)列{an}中,若2p+3m=5n,則有2ap+3am=5an(p,m,n∈N*).”
(1)請你判斷以上同學的猜想是否正確,并說明理由;
(2)請你提出一個更一般的命題,使得上面這位同學猜想的命題是你所提出命題的特例,并給予證明.
(3)請類比(2)中所提出的命題,對于等比數(shù)列{bn},請你寫出相應的命題,并給予證明.

查看答案和解析>>

“已知:中,,求證:”。下面寫出了用反證法證明這個命題過程中的四個推理步驟:
(1)所以,這與三角形內(nèi)角和定理相矛盾,;
(2)所以;
(3)假設;
(4)那么,由,得,即
這四個步驟正確的順序應是

A.(1)(2)(3)(4)B.(3)(4)(2)(1)C.(3)(4)(1)(2)D.(3)(4)(2)(1)

查看答案和解析>>


同步練習冊答案