綜上可知.直線與直線的交點住直線上. 查看更多

 

題目列表(包括答案和解析)

(1)一個動點P在圓x2+y2=4上移動時,求點P與定點A(4,3)連線的中點M的軌跡方程.
(2)自定點A(4,3)引圓x2+y2=4的割線ABC,求弦BC中點N的軌跡方程.
(3)在平面直角坐標系xOy中,曲線y=x2-6x+1與坐標軸的交點都在圓C上.
①求圓C的方程;
②若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.

查看答案和解析>>

精英家教網已知直線l過點M(1,2),且直線l與x軸正半軸和y軸的正半軸交點分別是A、B,(如圖,注意直線l與坐標軸的交點都在正半軸上)
(1)若三角形AOB的面積是4,求直線l的方程.
(2)求過點N(0,1)且與直線m垂直的直線方程.

查看答案和解析>>

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在x軸上,準線方程為x=±
1
2
,漸近線為y=±
3
x

(1)求雙曲線的方程;
(2)若A、B分別為雙曲線的左、右頂點,雙曲線的弦PQ垂直于x軸,求直線AP與BQ的交點M的軌跡方程.

查看答案和解析>>

設直線l1:y=k1x+1,l2:y=k2x-1,其中實數k1,k2滿足k1k2+2=0.證明l1與l2的交點在橢圓2x2+y2=1上.

查看答案和解析>>

(2013•黃岡模擬)在矩形ABCD中,|AB|=2
3
,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且
|OR|
|OF|
=
|CR′|
|OF|
=
1
n

(Ⅰ)求證:直線ER與GR′的交點P在橢圓Ω:
x2
3
+y2=1上;
(Ⅱ)若M、N為橢圓Ω上的兩點,且直線GM與直線GN的斜率之積為
2
3
,求證:直線MN過定點.

查看答案和解析>>


同步練習冊答案