故(*)等價于.即.這就是所求的充分必要條件(2)分兩種情形討論 查看更多

 

題目列表(包括答案和解析)

如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設(shè)Q為AE的中點,證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問中,作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

【解析】第一問中,當(dāng)時,,.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進而得到最值。

第二問中,∵,,      

∴原不等式等價于:,

, 亦即

分離參數(shù)的思想求解參數(shù)的范圍

解:(Ⅰ)當(dāng)時,,

當(dāng)上變化時,,的變化情況如下表:

 

 

1/e

時,,

(Ⅱ)∵,      

∴原不等式等價于:,

, 亦即

∴對于任意的,原不等式恒成立,等價于恒成立,

∵對于任意的時, (當(dāng)且僅當(dāng)時取等號).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>

已知函數(shù)。

(1)求函數(shù)的最小正周期和最大值;

(2)求函數(shù)的增區(qū)間;

(3)函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過怎樣的變換得到?

【解析】本試題考查了三角函數(shù)的圖像與性質(zhì)的運用。第一問中,利用可知函數(shù)的周期為,最大值為

第二問中,函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。故當(dāng),解得x的范圍即為所求的區(qū)間。

第三問中,利用圖像將的圖象先向右平移個單位長度,再把橫坐標(biāo)縮短為原來的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變),再向上平移1個單位即可。

解:(1)函數(shù)的最小正周期為,最大值為。

(2)函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。

 

所求的增區(qū)間為,

所求的減區(qū)間為,。

(3)將的圖象先向右平移個單位長度,再把橫坐標(biāo)縮短為原來的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變),再向上平移1個單位即可。

 

查看答案和解析>>

在下列關(guān)于斜率與傾斜角的說法中正確的是


  1. A.
    一條直線與x軸正方向所成的正角叫做這條直線的傾斜角
  2. B.
    傾斜角是第一或第二象限的角
  3. C.
    一條直線的斜率即是這條直線傾斜角的正切值
  4. D.
    斜率為零的直線平行于x軸或重合于x軸

查看答案和解析>>

下面四個條件:①平行于同一個平面②垂直于同一直線③與同一平面所成的角相等④分別垂直于兩個平行平面,其中,能夠判定空間兩條直線平行的有(  )

查看答案和解析>>


同步練習(xí)冊答案