由=41.得 .解之得:m=2 ----綜上可知: m=1或 m=2---------------------- 查看更多

 

題目列表(包括答案和解析)

如圖,是△的重心,、分別是邊、上的動點(diǎn),且、三點(diǎn)共線.

(1)設(shè),將、、表示;

(2)設(shè),證明:是定值;

(3)記△與△的面積分別為.求的取值范圍.

(提示:

【解析】第一問中利用(1)

第二問中,由(1),得;①

另一方面,∵是△的重心,

不共線,∴由①、②,得

第三問中,

由點(diǎn)、的定義知,,

時,;時,.此時,均有

  時,.此時,均有

以下證明:,結(jié)合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

、不共線,∴由①、②,得 

解之,得,∴(定值).

(3)

由點(diǎn)、的定義知,

時,;時,.此時,均有

  時,.此時,均有

以下證明:.(法一)由(2)知,

,∴

,∴

的取值范圍

 

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

【解析】如圖:|OB|=b,|O F1|=c.∴kPQ,kMN=﹣

直線PQ為:y(xc),兩條漸近線為:yx.由,得:Q(,);由,得:P(,).∴直線MN為:y=﹣(x),

y=0得:xM.又∵|MF2|=|F1F2|=2c,∴3cxM,解之得:,即e

【答案】B

查看答案和解析>>

對于問題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:解:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).參考上述解法,若關(guān)于x的不等式
k
x+a
+
x+b
x+c
<0
的解集為(-1,-
1
3
)∪(
1
2
,1)
,則關(guān)于x的不等式
kx
ax+1
+
bx+1
cx+1
<0
的解集為
 

查看答案和解析>>

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設(shè)
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關(guān)于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>


同步練習(xí)冊答案