(Ⅰ)求證:平面, 查看更多

 

題目列表(包括答案和解析)














(Ⅰ)求證:平面;
(Ⅱ)設的中點為,求證:平面;
(Ⅲ)求四棱錐的體積.

查看答案和解析>>


(1)求證:平面平面;
(2)求正方形的邊長;
(3)求二面角的平面角的正切值.

查看答案和解析>>


(1)求證:平面EFG∥平面CB1D1
(2)求證:平面CAA1C1⊥平面CB1D1  ;
(3)求異面直線FG、B1C所成的角

查看答案和解析>>


(1)求證:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小。

查看答案和解析>>

(Ⅰ)如圖1,A,B,C是平面內的三個點,且A與B不重合,P是平面內任意一點,若點C在直線AB上,試證明:存在實數λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如圖2,設G為△ABC的重心,PQ過G點且與AB、AC(或其延長線)分別交于P,Q點,若
AP
=m
AB
,
AQ
=n
AC
,試探究:
1
m
+
1
n
的值是否為定值,若為定值,求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

.選擇題:

1

2

3

4

5

6

7

8

9

10

11

12

B

D

A

D

C

D

A

C

B

A

C

B

.填空題:

13. 7 ;14.;15. ;16①②③④

三.解答題:

18. 記第一、二、三次射擊命中目標分別為事件A,B,C三次均未命中目標的事件為D.依題意. 設在處擊中目標的概率為,則,由

,所以, 2分   ,

,,

5 分

(Ⅰ)由于各次射擊都是獨立的,所以該射手在三次射擊擊中目標的概率為

,

.  8分

 

(Ⅱ)依題意,設射手甲得分為,則,,

,,所以的分布列為

所以。    12分

 

 

 

20. (Ⅰ)證明:連結于點,連結.

在正三棱柱中,四邊形是平行四邊形,

.

,

.   ………………………2分

      ∵平面,平面,

∥平面.       …………………………4分

 

(Ⅱ)過點,過點,連結.

∵平面平面,平面,平面平面

      ∴平面.

在平面內的射影.

.

是二面角的平面角.  

在直角三角形中,.

同理可求: .

.

,

.   …………………………12分

 

21.(Ⅰ),令,解得,1分   

時,,為增函數;當,為減函數;當,為增函數。4分  時,取得極大值為-4,當時,取處極小值為。…………………………6分

(Ⅱ)設,上恒成立.

,,若,顯然。 8分   若,

,令,解得,或,當時,

,當時,.10分  

 當時,.

,解不等式得,,當時,

滿足題意.綜上所述的范圍為…………...12分

 

 

 


同步練習冊答案