19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

注意事項:

1.本試卷滿分150分,考試時間120分鐘.

2.答卷前,考生務(wù)必將自己的學(xué)校、班級、姓名等寫在三相應(yīng)的位置.

3.本卷為答題卷,要求將所有試題答案或解答寫在答題卷指定位置上.

4.請用0.5毫米以下黑色的水筆作答.

考 生 填 寫 座 位

號 碼 的 末 兩 位

題 號

17

18

19

20

21

22

23

 

 

得 分

 

 

 

 

 

 

 

 

 

一.選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的;每小題選出答案后,請用2B鉛筆把就機(jī)讀卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號.)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

C

D

C

C

B

D

B

A

A

 

得分

評卷人

 

 

二.填空題(請把答案填在對應(yīng)題號的橫線上)

13. .    14..

15..    16. .

 

 

三.解答題(本大題共5小題,共64分.解答應(yīng)寫出文字說明、證明過程或演算步驟.請將答題的過程寫在答題卷中指定的位置.)

17.( 本題滿分12分)

解:(Ⅰ)∵,∴ (3分),又∵ 是鈍角,

       ∴ (或);...............6分

(Ⅱ)由余弦定理得,,..........9分

   ∴ .................12分,

 

 

18.(本題滿分12分)

解:(Ⅰ)設(shè)兩個紅球為,三個白球為,從中任意選取2個球,所有可能的結(jié)果如下:(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),()共有20種,………………………………………………………(5分)

其中紅球、白球都有的結(jié)果是(),(),(),(),(),(),(),(),(),(),(),()共有12種,

所以紅球、白球都有的概率為;…(8分)

(Ⅱ)∵“紅球個數(shù)不少于白球個數(shù)”包含兩類:兩紅,一紅一白,

∴由(Ⅰ)知中獎的概率為.……………………(12分)

 

19.(本題滿分12分)

證明:(Ⅰ)∵ ,

,

          ∴ ;........4分

  (Ⅱ)在三棱柱中,

    ∵ ,

∴ 四邊形,,都是矩形,

又 ∵ ,,,

,又 ∵ 中點,

中,,同理,

     ∴ ,∴ ,.....8分

     在中,,

     在中,,

,∴ .....10分

,

∴ ...........12分

解法二:(Ⅱ)以為原點,建立如圖所示的空間直角坐標(biāo)系,設(shè),,(6分),則 ,,  ∴ ,

,∴(8分),

,

,∴(10分)

,∴ .....12分

 

20.(本題滿分14分)

解;(Ⅰ)設(shè)圓....①,將兩點坐標(biāo)代入①得,

  ........................②(2分)

 又 ∵ 圓心在直線上,則 ...........③(3分)

   聯(lián)立②、③解之(4分),將代入中,得

 故 圓的方程為 (5分).

(Ⅱ)∵直線的傾斜角互補,又點在圓上,且為圓上相異兩點,∴ 它們的傾斜角都不為,∴它們的斜率互為相反數(shù)(6分),

     設(shè)直線的方程為 ,則直線的方程為 (7分),

     聯(lián)立 ,.............(9分)

(或 (9分))

解之: ,(11分),

(或 解之,(11分))

同理可得,,(12分),

(或 (12分))

............14分

(或 ...........14分)

 

21.(本題滿分14分)

解:(Ⅰ)當(dāng)=9時

......2分

解得:........3分

故函數(shù)在區(qū)間(-,-1)上是增函數(shù),

             在區(qū)間(3,+)上也是增函數(shù)...5分

(Ⅱ)

函數(shù)在(-,+)上為增函數(shù),∴對于,0恒成立,

故:=36-120,解得:3.........8分

所以3時,函數(shù)在(-,+)上為增函數(shù).......9分

。á螅┰冢á颍l件下函數(shù)在(-,+)上為增函數(shù),所以, 函數(shù)在區(qū)間上是增函數(shù),故有:

,∵,∴,從而方程x=至少有兩個不相等的實數(shù)根,即方程 至少有兩個不相等的實數(shù)根..............11分

又方程有一根為0,故:方程至少有一個不為0的根.

,解得:0............13分

    又∵3

   ∴ 3............14分

 

四.選考題(從下列兩道解答題中任選一道作答,作答時,請注明題號;若多做,則按首做題計入總分,滿分10分; 請將答題的過程寫在答題卷中指定的位置)

 

你選做_______題(請在橫線上注明題號)

 

解(或證明):

22. 證明:∵的切線,直線的割線

,(2分)

  又 ∵ ,∴,∴ (5分),

     ∵ ,

∴ △與△兩邊對應(yīng)成比例,且夾角相等(7分),

∴ △∽△(8分)

(10分).

23. 解:(Ⅰ)直線的參數(shù)方程是,即 ..5分

(Ⅱ)設(shè),則,

(7分),

,即圓的極坐標(biāo)方程為     

..........10分

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案