題目列表(包括答案和解析)
本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸。已知點(diǎn)的直角坐標(biāo)為(1,-5),點(diǎn)的極坐標(biāo)為若直線過點(diǎn),且傾斜角為,圓以為圓心、為半徑。
(I)求直線的參數(shù)方程和圓的極坐標(biāo)方程;
(II)試判定直線和圓的位置關(guān)系.
(2)(本小題滿分7分)選修4-4:矩陣與變換
把曲線先進(jìn)行橫坐標(biāo)縮為原來的一半,縱坐標(biāo)保持不變的伸縮變換,再做關(guān)于軸的反射變換變?yōu)榍,求曲線的方程.
(3)(本小題滿分7分)選修4-5:不等式選講
關(guān)于的一元二次方程對任意無實根,求實數(shù)的取值范圍.
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
C
B
A
D
B
C
C
D
D
A
C
二、填空題
13. 14. 15.4 16.③④
三、解答題
17.解:(1),
(2分)
又 (4分)
. (6分)
(2)
(8分)
(10分)
18.(1)證明:連結(jié)交于點(diǎn),取的中點(diǎn),連結(jié),則// 且依題意,知且,
,且,
故四邊形是平行四邊形,
,即 (3分)
又平面,平面
平面, (6分)
(2)解:處長交的處長線于點(diǎn),連結(jié),作于,連結(jié).
∵平面平面,平面平面
平面,
由三垂線定理,知,故就是三面角的平面角.(8分)
∵平面平面,平面平面
平面,故就是直線與平面成的角, (10分)
知設(shè),則.
在直三角形中:
.
在直角三角形中:
故三而角的大小為60°. (12分)
19.解:(1)記表示事無償援助,“取出的2件產(chǎn)品中無二等品”,
表示事件“取出的2件產(chǎn)品中恰有1件是二等品”。則、互斥,且
故
依題意,知又,得 (6分)
(2)(理)可能的取值為0,1,2,
若該批產(chǎn)品共100件,由(1)知,其中共有二等品100×0.2=20件,故
(9分)
0
1
2
所以的分布列為
∴的期望 (12分)
20.解:(1)在上單調(diào)遞增,上單調(diào)遞減,
有兩根,2,
(4分)
今則
因為在上恒大于0,
所以在上單調(diào)遞增,故
(6分)
(2)
(8分)
①當(dāng)時,,定義域為
恒成立,在上單調(diào)遞增; (9分)
②當(dāng)時,,定義域:
恒成立,在上單調(diào)遞增; (10分)
③當(dāng)時, ,定義域:
由得,由得.
故在上單調(diào)遞增;在上單調(diào)遞減. (11分)
所以當(dāng)時,在上單調(diào)遞增,故無極值;
當(dāng)時,在上單增;故無極值.
當(dāng)時,在上單調(diào)遞增;在上單調(diào)遞減.
故有極小值,且的極小值. (12分)
21.解:(1)設(shè)依題意得
(2分)
消去,,整理得. (4分)
當(dāng)時,方程表示焦點(diǎn)在軸上的橢圓;
當(dāng)時,方程表示焦點(diǎn)在軸上的橢圓;
當(dāng)時,方程表示圓. (6分)
(2)當(dāng)時,方程為設(shè)直線的方程為
(8分)
消去得 (10分)
根據(jù)已知可得,故有
直線的斜率為 (12分)
22.證明:(1)即證
(2分)
假設(shè)則
(4分)
綜上所述,根據(jù)數(shù)學(xué)歸納法,命題成立 (6分)
(2)由(1),得
(8分)
(10分)
又即 (12分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com