12.已知.如果對一切實(shí)數(shù).都有.則一定為 查看更多

 

題目列表(包括答案和解析)

已知△ABC,如果對一切實(shí)數(shù)t,都有|
BA
-
tBC
|≥|
AC
|
,則△ABC一定為( 。
A、銳角三角形
B、鈍角三角形
C、直角三角形
D、與t的值有關(guān)

查看答案和解析>>

已知△ABC,如果對一切實(shí)數(shù)t,都有|
BA
-
tBC
|≥|
AC
|
,則△ABC一定為( 。
A.銳角三角形B.鈍角三角形
C.直角三角形D.與t的值有關(guān)

查看答案和解析>>

已知△ABC,如果對一切實(shí)數(shù)t,都有,則△ABC一定為( )
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.與t的值有關(guān)

查看答案和解析>>

已知△ABC,如果對一切實(shí)數(shù)t,都有||≥||,則△ABC一定為
[     ]
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.與t的值有關(guān)

查看答案和解析>>

給出下列命題:
①已知函數(shù)在點(diǎn)處連續(xù),則
②若不等式對于一切非零實(shí)數(shù)均成立,則實(shí)數(shù)a的取值范圍是
③不等式的解集是;
④如果的三個(gè)內(nèi)角的余弦值分別等于的三個(gè)內(nèi)角的正弦值,則為銳角三角形,為鈍角三角形;
其中真命題的序號(hào)是:(    )。(將所有真命題的序號(hào)都填上)

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

C

C

D

D

A

C

二、填空題

13.          14.                     15.4            16.③④

三、解答題

17.解:(1)

                                                                         (2分)

              又                                                      (4分)

              .                                                                            (6分)

       (2)

                                                                    (8分)

             

                                        (10分)

18.(1)證明:連結(jié)于點(diǎn),取的中點(diǎn),連結(jié),則//       依題意,知,

,且,

故四邊形是平行四邊形,

,即      (3分)

              又平面,平面

              平面,                (6分)

       (2)解:處長的處長線于點(diǎn),連結(jié),作,連結(jié)

∵平面平面,平面平面

平面,

由三垂線定理,知,故就是三面角的平面角.(8分)

∵平面平面,平面平面

平面,故就是直線與平面成的角,   (10分)

              知設(shè),則

              在直三角形中:

              在直角三角形中:

              故三而角的大小為60°.                                                 (12分)

19.解:(1)記表示事無償援助,“取出的2件產(chǎn)品中無二等品”,

表示事件“取出的2件產(chǎn)品中恰有1件是二等品”。則、互斥,且

依題意,知,得                                      (6分)

       (2)(理)可能的取值為0,1,2,

              若該批產(chǎn)品共100件,由(1)知,其中共有二等品100×0.2=20件,故

              (9分)

0

1

2

              所以的分布列為

             

 

 

的期望                  (12分)

20.解:(1)上單調(diào)遞增,上單調(diào)遞減,

              有兩根,2,

                                   (4分)

              今

              因?yàn)?sub>上恒大于0,

所以上單調(diào)遞增,故

                                                                    (6分)

       (2)

                                                                                   (8分)

           ①當(dāng)時(shí),,定義域?yàn)?sub>

              恒成立,上單調(diào)遞增;                    (9分)

           ②當(dāng)時(shí),,定義域:

        恒成立,上單調(diào)遞增;             (10分)

           ③當(dāng)時(shí),  ,定義域:

              由,由

              故在上單調(diào)遞增;在上單調(diào)遞減.                      (11分)

              所以當(dāng)時(shí),上單調(diào)遞增,故無極值;

              當(dāng)時(shí),上單增;故無極值.

              當(dāng)時(shí),上單調(diào)遞增;在上單調(diào)遞減.

              故有極小值,且的極小值.        (12分)

 

21.解:(1)設(shè)依題意得

                                                                            (2分)

              消去,整理得.                                                       (4分)

              當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;

              當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;

              當(dāng)時(shí),方程表示圓.                                                                       (6分)

       (2)當(dāng)時(shí),方程為設(shè)直線的方程為

                                                                                                 (8分)

              消去                                (10分)

              根據(jù)已知可得,故有

              直線的斜率為                                                           (12分)

22.證明:(1)即證

             

                                                                                                        (2分)

              假設(shè)

                                                     (4分)

             

             

              綜上所述,根據(jù)數(shù)學(xué)歸納法,命題成立                                                     (6分)

       (2)由(1),得

                                       (8分)

                          (10分)

              又                       (12分)

 

 

 

 


同步練習(xí)冊答案