由余弦定理有 查看更多

 

題目列表(包括答案和解析)

在△ABC中,為三個(gè)內(nèi)角為三條邊,

(I)判斷△ABC的形狀;

(II)若,求的取值范圍.

【解析】本題主要考查正余弦定理及向量運(yùn)算

第一問利用正弦定理可知,邊化為角得到

所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。

第二問中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,則A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長及△ABC的面積。

【解析】本試題主要考查了余弦定理的運(yùn)用。利用由題意得,

,并且得到結(jié)論。

解:(Ⅰ)由題意得,………1分…………1分

(Ⅱ)………………1分

   

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

如圖,點(diǎn)P為斜三棱柱ABCA1B1C1的側(cè)棱BB1上一點(diǎn),PMBB1AA1于點(diǎn)M,PNBB1CC1于點(diǎn)N.

(1)求證:CC1MN.

(2)在任意△DEF中,有由余弦定理DE2DF2EF2-2DF·EFcos∠DFE,拓展到空間,類比三角形的余弦定理,寫出一個(gè)斜三棱柱的三個(gè)側(cè)面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并加以證明.

查看答案和解析>>

某觀測站C在城A的南偏西20°方向上,從城A出發(fā)有一條公路,走向是南偏東40°,在距C處31公里的公路上的B處有一個(gè)人正沿著公路向城A走去,走20公里后到達(dá)D處,測得CD=21公里,求這時(shí)此人距城A多少公里?某同學(xué)甲已經(jīng)由余弦定理求得cos∠CDB=-
17
請你幫助他繼續(xù)完成此題!

查看答案和解析>>


同步練習(xí)冊答案