查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題:本大題共有12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)正確的

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

C

D

D

A

B

B

C

B

A

C

 

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在答題卡的相應(yīng)位置。

13.(1,0)     14.       15.1      16.②③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

 

   解:(Ⅰ)由

  

       

        ……………………………………4分

     又因?yàn)?sub>

     解得…………………………………………5分

     ………………………………………6分

(Ⅱ)在

 

        !9分

,

,

又由(Ⅰ)知

取得最大值時(shí),為等邊三角形. …………………………12分

 

 

18.(本小題滿分12分)

解:(Ⅰ)設(shè)抽取的樣本為名學(xué)生的成績,

則由第一行中可知

;

②處的數(shù)值為;

③處的數(shù)值為…………4分

   (Ⅱ)成績在[70,80分的學(xué)生頻率為0.2,成績在[80.90分的學(xué)生頻率為0.32,

所以成績在[70.90分的學(xué)生頻率為0.52,……………………………………6分

由于有900名學(xué)生參加了這次競賽,

所以成績在[70.90分的學(xué)生約為(人)………………8分

   (Ⅲ)利用組中值估計(jì)平均為

…………12分

 

19.(本小題滿分12分)

解:(I)由幾何體的三視圖可知,低面ABCD是邊長為4的正方形,

,…………………………………3分

,

………………6分

   (Ⅱ)連,

,

°

°

………………10分

 

……………………………………………………………………12分

 

20.(本小題滿分12分)

解:(I)10年后新建住房總面積為

    。………………………3分

    設(shè)每年拆除的舊住房為………………5分

    解得,即每年拆除的舊住房面積是…………………………………6分

(Ⅱ)設(shè)第年新建住房面積為,則=

所以當(dāng);…………………………………………9分

當(dāng)

   

……………………………………12分

 

21.(本小題滿分12分)

解:(Ⅰ)由題意可知,可行域是以為頂點(diǎn)的三角形,因?yàn)?sub>,

    故

    為直徑的圓,

    故其方程為………………………………………………3分

    設(shè)橢圓的方程為,

   

    又.

    故橢圓………………………………………5分

   (Ⅱ)直線始終與圓相切。

    設(shè)。

    當(dāng)。

    若

                ;

    若

                 ;

    即當(dāng)……………………………7分

    當(dāng)時(shí),,

    。

    因此,點(diǎn)Q的坐標(biāo)為。

    ……………10分

   

    當(dāng),

    。

    綜上,當(dāng),…………12分

 

22.(本小題滿分14分)

解:(I)(1),

    !1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   (ii)在,

    由

          

           ,

    ;

    當(dāng);

    ;

    .……………………………………6分

    面

   

    且

    又

    ,

   

    ……………9分

   (Ⅱ)當(dāng),

    ①;

    ②當(dāng)時(shí),

    ,

   

    ③

    從面得;

    綜上得,.………………………14分

 

 


同步練習(xí)冊答案