求三棱錐是全面積,(Ⅲ)當點E在線段PC上何處時.AE與平面PAB所成的角為600 查看更多

 

題目列表(包括答案和解析)

已知三棱錐P-ABC的三視圖如如圖所示,
(Ⅰ)求證:△PBC是直角三角形;
(Π)求三棱錐P-ABC是全面積;
(Ⅲ)當點E在線段PC上何處時,AE與平面PAB所成的角為600
精英家教網(wǎng)

查看答案和解析>>

已知三棱錐P-ABC的三視圖如如圖所示,
(Ⅰ)求證:△PBC是直角三角形;
(Π)求三棱錐P-ABC是全面積;
(Ⅲ)當點E在線段PC上何處時,AE與平面PAB所成的角為60

查看答案和解析>>

精英家教網(wǎng)一個三棱錐的三視圖如圖所示,其中正視圖和側(cè)視圖是兩條直角邊分別是1和2的兩個全等的直角三角形,俯視圖是直角邊長為1的等腰直角三角形.
(Ⅰ)請畫出這個三棱錐的直觀圖,并求出它的體積;
(Ⅱ)以D為頂點,DD1,DA,DC為相鄰的三條棱,作
平行六面體ABCD-A1B1C1D1,已知點E在AA1上移動
(1)當E點為AA1的中點時,證明BE⊥平面B1C1E.
(2)在CC1上求一點P,使得平面BC1E∥平面PAD1,指出P點的位置
(Ⅲ)AE為何值時,二面角C-ED1-D的大小為45°.

查看答案和解析>>

一個三棱錐的三視圖如圖所示,其中正視圖和側(cè)視圖是兩條直角邊分別是1和2的兩個全等的直角三角形,俯視圖是直角邊長為1的等腰直角三角形.
(Ⅰ)請畫出這個三棱錐的直觀圖,并求出它的體積;
(Ⅱ)以D為頂點,DD1,DA,DC為相鄰的三條棱,作
平行六面體ABCD-A1B1C1D1,已知點E在AA1上移動
(1)當E點為AA1的中點時,證明BE⊥平面B1C1E.
(2)在CC1上求一點P,使得平面BC1E∥平面PAD1,指出P點的位置
(Ⅲ)AE為何值時,二面角C-ED1-D的大小為45°.

查看答案和解析>>

如圖(1),三棱錐P′-A′BC′中,P′A′⊥平面A′BC′,△A′BC′是正三角形,E是P′C′的中點:如圖(2),三棱錐P-ACD中,PA⊥平面ACD,∠ACD=90°,∠DAC=30°,若△P′A′C′≌△PAC,現(xiàn)將兩個三棱錐拼接成四棱錐P-ABCD,使得面P′A′C′與面PAC完全重合,在四棱錐P-ABCD中,解答以下問題:

(I)求證:CD⊥AE;
(Ⅱ)當PA=AC=
3
時,求棱錐E-ABCD的體積.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個答案中,只有一個項是符合題目要求的,把正確的代號填在答題卡指定的位置上。

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

C

A

A

A

D

B

D

C

二、填空題:本大題共5小題,每小題4分,共20分,把答案填在答題卡的相應位置。

11.-1或             12.               13.0.32    

14.                  15.100100   

 

三、解答題:本大題共6小題,共74分,解答應寫出文字說明,證明過程或演算步驟,在答題卡上相應題目的答題區(qū)域內(nèi)作答。

16. (本小題滿分13分)

解:

  

兩邊平方并整理得

    

根據(jù)余弦定理得

 

17. (本小題滿分13分)

解法一:

(Ⅰ)由俯視圖可得:

           有俯視圖知

           

是以B為直角頂點的直角三角形。

(Ⅱ)三角形PAC的面積為

俯視圖是底邊長為,斜邊上的高為的等腰直角三角形

三角形PAB的面積為,且PB=

由(Ⅰ)知三角形PBC是直角三角形,故其面積為

故三棱錐P-ABC的全面積為

(Ⅲ)在面ABC內(nèi)過A做AC的垂線AQ,

以A為原點,AC、AQ、AP所在直線分別為x軸、y軸 、z軸建立空間直角坐標系,如圖所示

設(shè)為面PAB的一個法向量

設(shè)

故當E為PC的中點時,AE與面PAB所成的為600

 

解法二:

(Ⅰ)由正視圖和俯視圖可判斷

在面ABC內(nèi)過A做AC的垂線AQ

以A為原點,AC、AQ、AP所在直線分別為x軸、y軸、z軸建立空間直角坐標系,如圖所示

是以B為直角頂點的直角三角形。

(Ⅱ)同解法一。

(Ⅲ)設(shè)為面PAB的一個法向量

故當E為PC的中點時,AE與面PAB所成的為600

 

18. (本小題滿分13分)

解:

(Ⅰ)設(shè)抽到相鄰兩個月的數(shù)據(jù)為事件A

因為從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有中情況,每種情況都是等可能出現(xiàn)的其中,抽到相鄰兩個月的數(shù)據(jù)的情況有5種

所以

(Ⅱ)由數(shù)據(jù)求得

由公式求得

再由

所以y關(guān)于x的線性回歸方程為

(Ⅲ)當時,

同樣,當時,

所以,該小組所得線性回歸方程是理想的。

 

19. (本小題滿分13分)‘

   解:(Ⅰ)設(shè)橢圓方程為

    ①

點A(1,1)在橢圓上,    ②

    ③

故所求橢圓方程為

(Ⅱ)由A(1,1)得C(-1,1)

易知AP的斜率k必存在,設(shè)AP;

由A(1,1)得的一個根

由韋達定理得:

以-k代k得

即存在實數(shù)

20. (本小題滿分14分)

解:(Ⅰ)

時,

時,

連續(xù),故

(Ⅱ)即不等式在區(qū)間有解

可化為

在區(qū)間有解

在區(qū)間遞減,在區(qū)間遞增

所以,實數(shù)a的取值范圍為

(Ⅲ)設(shè)存在公差為d首項等于的等差數(shù)列

和公比q大于0的等比數(shù)列,使得數(shù)列的前n項和等于

 

   ①

  ②

②-①×2得

(舍去)

       故,

此時,數(shù)列的的前n項和等于

故存在滿足題意的等差數(shù)列金額等比數(shù)列,使得數(shù)列的前n項和等于

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21. 本題有(1)、(2)、(3)三個小題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分

(1)(本小題滿分7分)選修4――2:矩陣與變換

解一:

設(shè)

解二:

設(shè) 

(2)(本小題滿分7分)選修4――4:坐標系與凡屬方程

解:曲線C1可化為:

曲線C2可化為

聯(lián)立  解得交點為

(3)(本小題滿分7分)選修4――5:不等式選講

解:

當且僅當

取最小值,最小值為

 

 

 


同步練習冊答案