故直線的方程為...........................7 查看更多

 

題目列表(包括答案和解析)

 在直角坐標(biāo)系中,曲線的參數(shù)方程為.在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,曲線的方程為的交點個數(shù)為        .

易得,故有2個交點。

 

查看答案和解析>>

已知曲線上動點到定點與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設(shè)圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時,檢驗得不符合要求;

當(dāng)直線l的斜率為k時,;,化簡得

第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

由于點M在橢圓C上,所以

由已知,則

由于,故當(dāng)時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點都在圓上.

(1)求圓的方程;

 (2)若圓與直線交于、兩點,且,求的值.

【解析】本試題主要是考查了直線與圓的位置關(guān)系的運用。

(1)曲線軸的交點為(0,1),

軸的交點為(3+2,0),(3-2,0) 故可設(shè)的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.

(2)因為圓與直線交于、兩點,且。聯(lián)立方程組得到結(jié)論。

 

查看答案和解析>>

設(shè)橢圓 )的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線  與橢圓 交于 , 兩點.

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點為,即

,解得橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當(dāng)直線斜率不存在時,經(jīng)檢驗不合題意.                    --------5分

②當(dāng)直線斜率存在時,設(shè)存在直線,且,.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>

給出問題:已知△ABC滿足a·cosA=b·cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:

故△ABC事直角三角形.

(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于

故△ABC是等腰三角形.

綜上可知,△ABC是等腰直角三角形.

請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果________.

查看答案和解析>>


同步練習(xí)冊答案