題目列表(包括答案和解析)
已知a、b、c是互不相等的非零實(shí)數(shù).若用反證法證明三個(gè)方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個(gè)方程有兩個(gè)相異實(shí)根.
【解析】本試題主要考查了二次方程根的問(wèn)題的綜合運(yùn)用。運(yùn)用反證法思想進(jìn)行證明。
先反設(shè),然后推理論證,最后退出矛盾。證明:假設(shè)三個(gè)方程中都沒(méi)有兩個(gè)相異實(shí)根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。
證明:假設(shè)三個(gè)方程中都沒(méi)有兩個(gè)相異實(shí)根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由題意a、b、c互不相等,∴①式不能成立.
∴假設(shè)不成立,即三個(gè)方程中至少有一個(gè)方程有兩個(gè)相異實(shí)根.
如圖,邊長(zhǎng)為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問(wèn)中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
第二問(wèn)中,作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
(2)作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
二面角O-AE-D的平面角的余弦值為
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)。科。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
第二問(wèn),由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過(guò)點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)< 時(shí),求實(shí)數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問(wèn)中,利用
第二問(wèn)中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com