(2)若.求角的大小. 查看更多

 

題目列表(包括答案和解析)

 

ABC中,銳角的對邊長等于2,向量,向量.

(Ⅰ)若向量,求銳角A的大小;

(Ⅱ)在(Ⅰ)的條件下,求△ABC面積的最大值.   

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知,且f(x)圖像上相鄰的兩個對稱軸的距離是

(1)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

(2)銳角△ABC中,角A、B、C所對的邊分別為a,b,c,若求角C.

查看答案和解析>>

已知,且f(x)圖像上相鄰的兩個對稱軸的距離是

(1)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

(2)銳角△ABC中,角A、B、C所對的邊分別為a,b,c,若求角C.

查看答案和解析>>

精英家教網(wǎng)如圖,
BC
的大小是
AB
大小的k倍,
BC
的方向由
AB
的方向逆時針旋轉(zhuǎn)θ角得到,則我們稱
AB
經(jīng)過一次(θ,k)延伸得到
BC
. 已知
OA1
=(1,0)

(1)向量
OA1
經(jīng)過2次(
π
2
1
2
)
延伸,分別得到向量
A1A2
A2A3
,求
A1A2
、
A2A3
的坐標(biāo).
(2)向量
OA1
經(jīng)過n-1次(
π
2
,
1
2
)
延伸得到的最后一個向量
An-1An
,(n∈N*,n>1),設(shè)點An(xn,yn),求An的極限位置A(
lim
n→∞
xn,
lim
n→∞
yn)

(3)向量
OA1
經(jīng)過2次(θ,k)延伸得到向量
A1A2
、
A2A3
,其中k>0,θ∈(0,π),若
OA1
、
A1A2
A2A3
恰能夠構(gòu)成一個三角形(即A3與O重合),求θ,k的值.

查看答案和解析>>

(本小題滿分12分)

    已知角A、B、C是的三個內(nèi)角,若向量,且

   (1)求的值;

   (2)求的最大值

 

查看答案和解析>>

一、選擇題(每題5分共50分)

1.D            2.A            3.B           4.C            5.C           

6.C       7.B        8.C    9.C    10.D

二、填空題(每題5分共20分)

       11.6ec8aac122bd4f6e          12.6ec8aac122bd4f6e                 13.6ec8aac122bd4f6e                  

14.(0,2),6ec8aac122bd4f6e               15.3

三、解答題(共80分)

16.解:(Ⅰ)由已知得:6ec8aac122bd4f6e,  

6ec8aac122bd4f6e是△ABC的內(nèi)角,所以6ec8aac122bd4f6e.    

(2)由正弦定理:6ec8aac122bd4f6e,6ec8aac122bd4f6e

又因為6ec8aac122bd4f6e,6ec8aac122bd4f6e,又6ec8aac122bd4f6e是△ABC的內(nèi)角,所以6ec8aac122bd4f6e

 

17.證明:連結(jié)AB,A1D,在正方形中,A1B=A1D,O是BD中點,

∴A1O⊥BD;                 

連結(jié)OM,A1M,A1C1,設(shè)AB=a,則AA1=a,MC=6ec8aac122bd4f6ea=MC1

OA=OC=6ec8aac122bd4f6ea,AC=6ec8aac122bd4f6ea,

∴A1O2=A1A2+AO2=a2+6ec8aac122bd4f6ea2=6ec8aac122bd4f6ea2,OM2=OC2+MC2=6ec8aac122bd4f6ea2,A1M2=A1C12+MC12=2a2+6ec8aac122bd4f6ea2=6ec8aac122bd4f6ea2,∴A1M2=A1O2+OM2,

∴A1O⊥OM,  

∴AO1⊥平面MBD

18解:(Ⅰ)6ec8aac122bd4f6e,

因為函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e取得極值,則有6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e

解得6ec8aac122bd4f6e6ec8aac122bd4f6e

(Ⅱ)由(Ⅰ)可知,6ec8aac122bd4f6e,

6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e;

當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e;

當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e

所以,當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e取得極大值6ec8aac122bd4f6e,又6ec8aac122bd4f6e,6ec8aac122bd4f6e

則當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e

因為對于任意的6ec8aac122bd4f6e,有6ec8aac122bd4f6e恒成立,

所以 6ec8aac122bd4f6e,

解得 6ec8aac122bd4f6e6ec8aac122bd4f6e

因此6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e

19.解(Ⅰ)由題意知6ec8aac122bd4f6e,6ec8aac122bd4f6e   6ec8aac122bd4f6e  

當(dāng)n≥2時,6ec8aac122bd4f6e,6ec8aac122bd4f6e,

兩式相減得 6ec8aac122bd4f6e

整理得:6ec8aac122bd4f6e    

∴數(shù)列{6ec8aac122bd4f6e}是以2為首項,2為公比的等比數(shù)列。

6ec8aac122bd4f6e   

(Ⅱ)由(Ⅰ)知6ec8aac122bd4f6e,∴bn=n6ec8aac122bd4f6e  

6ec8aac122bd4f6e, …………①

6ec8aac122bd4f6e, …………②

①-②得

6ec8aac122bd4f6e,   

6ec8aac122bd4f6e,    

6ec8aac122bd4f6e,   

20.解:設(shè)這臺機器最佳使用年限是n年,則n年的保養(yǎng)、維修、更換易損零件的總費用為:

6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e

等號當(dāng)且僅當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e

答:這臺機器最佳使用年限是12年,年平均費用的最小值為1.55萬元.

21.⑴c=2, a=3 雙曲線的方程為

⑵ 得 (1?3k2)x2?6kx?9=0

  x1+x2= , x1x2=

由△>0 得 k2<1

  由= x1x2+y1y2=(1+k2) x1x2+k(x1+x2)+2>2得 <k2<3

  所以,<k2<1

即k∈(?1, )∪( , 1 )

附加題

(1)證明:先將6ec8aac122bd4f6e變形:6ec8aac122bd4f6e,

當(dāng)6ec8aac122bd4f6e,即6ec8aac122bd4f6e時,∴6ec8aac122bd4f6e恒成立,

6ec8aac122bd4f6e的定義域為6ec8aac122bd4f6e。                                     

反之,若6ec8aac122bd4f6e對所有實數(shù)6ec8aac122bd4f6e都有意義,則只須6ec8aac122bd4f6e

6ec8aac122bd4f6e,即6ec8aac122bd4f6e,解得6ec8aac122bd4f6e,故6ec8aac122bd4f6e。  

(2)解析:設(shè)6ec8aac122bd4f6e,

6ec8aac122bd4f6e是增函數(shù),

∴當(dāng)6ec8aac122bd4f6e最小時,6ec8aac122bd4f6e最小。

6ec8aac122bd4f6e,                               

 顯然,當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e取最小值為6ec8aac122bd4f6e,

此時6ec8aac122bd4f6e為最小值。                      

(3)證明:當(dāng)6ec8aac122bd4f6e時,6ec8aac122bd4f6e,

當(dāng)且僅當(dāng)m=2時等號成立。                                  

6ec8aac122bd4f6e。                               

 

 

 


同步練習(xí)冊答案