∴直線OM的方程為y=-x. 查看更多

 

題目列表(包括答案和解析)

已知圓方程為:x2+y2=4.
(Ⅰ)直線L過點P(1,2),且與圓C交于A、B兩點,若|AB|=2
3
,求直線L方程.
(Ⅱ)過圓C上一動點M作平行于X軸的直線m,設m與y軸交點為N,若向量
OQ
=
OM
+
ON
(O為原點),求動點Q軌跡方程.

查看答案和解析>>

已知橢圓C的方程為:,其焦點在x軸上,離心率
(1)求該橢圓的標準方程;
(2)設動點P(x,y)滿足,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的方程為(a>0),其焦點在x軸上,點Q為橢圓上一點.
(1)求該橢圓的標準方程;
(2)設動點P(x,y)滿足,其中M、N是橢圓C上的點,直線OM與ON的斜率之積為,求證:為定值;
(3)在(2)的條件下探究:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的方程為:,其焦點在x軸上,離心率
(1)求該橢圓的標準方程;
(2)設動點P(x,y)滿足,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的方程為:,其焦點在x軸上,離心率
(1)求該橢圓的標準方程;
(2)設動點P(x,y)滿足,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案