題目列表(包括答案和解析)
ξ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
P1 | 0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 |
P2 | 0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
(12分)在奧運(yùn)會射箭決賽中,參賽號碼為1~4號的四名射箭運(yùn)動員參加射箭比賽。
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運(yùn)動員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運(yùn)動員射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)分別為、.根據(jù)教練員提供的資料,其概率分布如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 | |
0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
①若1,2號運(yùn)動員各射箭一次,求兩人中至少有一人命中9環(huán)的概率;
②判斷1號,2號射箭運(yùn)動員誰射箭的水平高?并說明理由.(本小題14分)在奧運(yùn)會射箭決賽中,參賽號碼為1~4號的四名射箭運(yùn)動員參加射箭比賽。
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運(yùn)動員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運(yùn)動員射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)分別為、.根據(jù)教練員提供的資料,其概率分布如下表:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
0 |
0 |
0 |
0 |
0.06 |
0.04 |
0.06 |
0.3 |
0.2 |
0.3 |
0.04 |
|
0 |
0 |
0 |
0 |
0.04 |
0.05 |
0.05 |
0.2 |
0.32 |
0.32 |
0.02 |
① 若1,2號運(yùn)動員各射箭一次,求兩人中至少有一人命中9環(huán)的概率;
② ②判斷1號,2號射箭運(yùn)動員誰射箭的水平高?并說明理由.
已知參賽號碼為1~4號的四名射箭運(yùn)動員參加射箭比賽。
(1)通過抽簽將他們安排到1~4號靶位,試求恰有一名運(yùn)動員所抽靶位號與其參賽號碼相同的概率;
(2)記1號,2號射箭運(yùn)動員,射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)。
根據(jù)教練員提供的資料,其概率分布如下表:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
0 |
0 |
0 |
0 |
0.06 |
0.04 |
0.06 |
0.3 |
0.2 |
0.3 |
0.04 |
|
0 |
0 |
0 |
0 |
0.04 |
0.05 |
0.05 |
0.2 |
0.32 |
0.32 |
0.02 |
① 若1,2號運(yùn)動員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;
② 判斷1號,2號射箭運(yùn)動員誰射箭的水平高?并說明理由.
ξ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
P1 | 0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 |
P2 | 0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
1.B 2.D 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.C
11. 12.4 13.2.442 14. 15.9,15
16.(Ⅰ),∴,
∴,∴
(Ⅱ)
,∴,
∴
17.(Ⅰ)從4名運(yùn)動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運(yùn)動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運(yùn)動員所抽靶位號與參賽號相同的概率為
(Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524
②
所以2號射箭運(yùn)動員的射箭水平高.
18.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.∴橢圓C的方程為
(Ⅱ),設(shè)點(diǎn),則
∴,∵,∴,∴∴的最小值為6.
19.(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE.
(Ⅱ)當(dāng)時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則
∵而,∴∴MFAN,
∴四邊形ANFM是平行四邊形. ∴
又∵平面BDF,平面BDF. ∴平面BDF.
(Ⅲ)取EF中點(diǎn)G,EB中點(diǎn)H,連結(jié)DG、GH、DH,∵DE=DF,∴ ∵平面ACFE,∴ 又∵,∴又∵,∴
∴是二面角B―EF―D的平面角.
在△BDE中∴∴,
∴又又∴在△DGH中,
由余弦定理得即二面角B―EF―D的大小為
20.(Ⅰ)設(shè),,
∴在單調(diào)遞增.
(Ⅱ)當(dāng)時,,又,,即;
當(dāng)時,,,由,得或.
的值域?yàn)?sub>
(Ⅲ)當(dāng)x=0時,,∴x=0為方程的解.
當(dāng)x>0時,,∴,∴
當(dāng)x<0時,,∴,∴
即看函數(shù)
與函數(shù)圖象有兩個交點(diǎn)時k的取值范圍,應(yīng)用導(dǎo)數(shù)畫出的大致圖象,
∴,∴
21.(Ⅰ)當(dāng)時, ,∴,令 有x=0,
當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增.
∴∴;
(Ⅱ)∵,∴∴
∴為首項(xiàng)是1、公比為的等比數(shù)列. ∴∴;
(Ⅲ)∵,由(1)知,
∴,即證.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com