某通道有兩道門.在每道門前的匣子里各有3把鑰匙.其中一把能打開任何一道門.一把只能打開本道門.還有一把不能打開任何一道門.現(xiàn)從第一道門開始.隨機(jī)地從門前的匣子里取一把鑰匙開門.若不能進(jìn)入.就終止,若能進(jìn)入.再從第二道門前的匣子里隨機(jī)地取一把鑰匙.并用已得到的兩把鑰匙開門.(Ⅰ)求第一道門打不開的概率,(Ⅱ)求能進(jìn)入第二道門的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。

(Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;

(Ⅱ)試從兩位考生正確完成題數(shù)的數(shù)學(xué)期望及至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.

 

查看答案和解析>>

(本小題滿分12分)
某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。
(Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;
(Ⅱ)試從兩位考生正確完成題數(shù)的數(shù)學(xué)期望及至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.

查看答案和解析>>

(本小題滿分12分)

道路交通安全法中將飲酒后違法駕駛機(jī)動車的行為分成兩個(gè)檔次:“酒后駕車”和“醉酒駕車”,其檢測標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量Q(簡稱血酒含量,單位是毫克/100毫升),當(dāng)20≤Q<80時(shí),為酒后駕車;當(dāng)Q≥80時(shí),為醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了200輛機(jī)動車駕駛員的血酒含量,其中查處酒后駕車的有6人,查處醉酒駕車的有2人,依據(jù)上述材料回答下列問題:

   (Ⅰ)分別寫出違法駕車發(fā)生的頻率和醉酒駕車占違法駕車總數(shù)的百分?jǐn)?shù);

(Ⅱ)從違法駕車的8人中抽取2人,求取到醉酒駕車人數(shù)的分布列和期望。

(Ⅲ)飲酒后違法駕駛機(jī)動車極易發(fā)生交通事故,假設(shè)酒后駕車和醉酒駕車發(fā)生交通事故的概率分別是0.1和0.25,且每位駕駛員是否發(fā)生交通事故是相互獨(dú)立的。依此計(jì)算被查處的8名駕駛員中至少有一人發(fā)生交通事故的概率(列式)。

查看答案和解析>>

(本小題滿分12分)

為了加快經(jīng)濟(jì)的發(fā)展,某市選擇A、B兩區(qū)作為龍頭帶動周邊地區(qū)的發(fā)展,決定在AB兩區(qū)的周邊修建城際快速通道,假設(shè)A、B兩區(qū)相距個(gè)單位距離,城際快速通道所在的曲線為E,使快速通道E上的點(diǎn)到兩區(qū)的距離之和為4個(gè)單位距離.

   (Ⅰ)以線段AB的中點(diǎn)O為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求城際快速通道所在曲線E的方程;

   (Ⅱ)若有一條斜率為的筆直公路l與曲線E交于P,Q兩點(diǎn),同時(shí)在曲線E上建一個(gè)加油站M(橫坐標(biāo)為負(fù)值)滿足,面積的最大值.                                

 

查看答案和解析>>

(本小題滿分12分)

    2012年4月15日,央視《每周質(zhì)量報(bào)告》曝光某省一些廠商用生石灰處理皮革廢料,熬制成工業(yè)明膠,賣給一些藥用膠囊生產(chǎn)企業(yè),由于皮革在工業(yè)加工時(shí),要使用含鉻的鞣制劑,因此這樣制成的膠囊,往往重金屬鉻超標(biāo),嚴(yán)重危害服用者的身體健康。該事件報(bào)道后,某市藥監(jiān)局立即成立調(diào)查組,要求所有的藥用膠囊在進(jìn)入市場前必須進(jìn)行兩輪檢測,只有兩輪都合格才能進(jìn)行銷售,否則不能銷售,兩輪檢測是否合格相互沒有影響。

(1)某藥用膠囊共生產(chǎn)3個(gè)不同批次,經(jīng)檢測發(fā)現(xiàn)有2個(gè)批次為合格,另1個(gè)批次為不合格,現(xiàn)隨機(jī)抽取該藥用膠囊5件,求恰有2件不能銷售的概率;

(2)若對某藥用膠囊的3個(gè)不同批次分別進(jìn)行兩輪檢測,藥品合格的概率如下表:

 

第1批次

第2批次

第3批次

第一輪檢測

第二輪檢測

 記該藥用膠囊能通過檢測進(jìn)行銷售的批次數(shù)為,求的分布列及數(shù)學(xué)期望

 

查看答案和解析>>

一.選擇題

序號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

A

C

B

D

A

 

二填空題

13. 2或8;        14. ;            15.;           16..

三.解答題

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分

.………………………………………………………………4分

則V=.     ……………………………………………………………… 6分

(Ⅱ)∵PA=CA,F(xiàn)為PC的中點(diǎn),∴AF⊥PC.            ……………………………………8分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E為PD中點(diǎn),F(xiàn)為PC中點(diǎn),∴EF∥CD.則EF⊥PC.     ………………………………10分

∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分

 

19.設(shè)第一個(gè)匣子里的三把鑰匙為A,B,C,第二個(gè)匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)

(Ⅰ)第一道門打不開的概率為;……………………………………………………………5分

(Ⅱ)能進(jìn)入第二道門的情況有Aa,Ab,Ac,Ba,Bb,而二把鑰匙的不同情況有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9種,故能進(jìn)入第二道門的概率為……………………………………………………………12分

 

20.(Ⅰ)依題

 

…………………………………………………3分

為等差數(shù)列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分

成等差數(shù)列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

21解:(Ⅰ)依題PN為AM的中垂線

…………………………………………………2分

又C(-1,0),A(1,0)

所以N的軌跡E為橢圓,C、A為其焦點(diǎn)…………………………………………………………4分

a=,c=1,所以為所求………………………………………………………5分

(Ⅱ)設(shè)直線的方程為:y=k(x-1),代入橢圓E的方程:x2+2y2=2得:

(1+2k2)x2-4k2x+2k2-2=0………………(1)

設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個(gè)根.

…………………………………………………………7分

依題

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解法(一):

   時(shí),……①

時(shí),恒成立,

時(shí),①式化為……②

時(shí),①式化為……③…………………………………………………5分

,則…………………………7分

所以

故由②,由③………………………………………………………………………13分

綜上時(shí),恒成立.………………………………………………14分

解法(二):

   時(shí),……①

時(shí),,,不合題意…………………………………………………2分

恒成立

上為減函數(shù),

,矛盾,…………………………………………………………………………………5分

=

   若,,故在[-1,1]內(nèi),

,得,矛盾.

依題意,  解得

綜上為所求.……………………………………………………………………………14分

 

 

 

 

 


同步練習(xí)冊答案