(3).提示:這三道題是遞推數列的基本類型:它們都可以通過特定的方法轉換為等差.等比數列的問題來解決. 查看更多

 

題目列表(包括答案和解析)

定義:若數列{An}滿足An+1=
A
2
n
則稱數列{An}為“平方遞推數列”,已知數列{an}中,a1=2,點{an,an+1}在函數f(x)=2x2+2x的圖象上,其中n的正整數.
(1)證明數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列;
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式;
(3)記bn=log2an+1Tn,求數列{bn}的前n項和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>

(2012•石景山區(qū)一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

若數列滿足,則稱數列平方遞推數列.已知數列,,點在函數的圖象上,其中為正整數.

1)證明數列平方遞推數列,且數列為等比數列;

2設(1)中平方遞推數列的前項積為

,求

3)在(2)的條件下,記,求數列的前項和,并求使的最小值

 

查看答案和解析>>

定義:若數列滿足,則稱數列為“平方遞推數列”。已知數列中,,點在函數的圖像上,其中為正整數。

  (1)證明:數列是“平方遞推數列”,且數列為等比數列。

  (2)設(1)中“平方遞推數列”的前項之積為,即,求數列的通項及關于的表達式。

(3)記,求數列的前項之和,并求使的最小值。

查看答案和解析>>

定義:若數列{An}滿足則稱數列{An}為“平方遞推數列”,已知數列{an}中,a1=2,點{an,an+1}在函數f(x)=2x2+2x的圖象上,其中n的正整數.
(1)證明數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列;
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式;
(3)記,求數列{bn}的前n項和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>


同步練習冊答案