15.在△ABC中.角A.B.C的對(duì)邊分別為a.b.c.已知向量 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊長,a=,b=,,求邊BC上的高.

查看答案和解析>>

(本小題滿分13分)在△ABC中,ab、c分別是角A、B、C的對(duì)邊,且,
(1)求角B的大。
(2)若最大邊的邊長為,且,求最小邊長.

查看答案和解析>>

(本小題滿分13分)

在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知

   (1)求的值;

   (2)若

查看答案和解析>>

(本小題滿分13分)

如圖在直三棱柱ABC—A1B1C1中,AC=BC=2,AA1=,∠ACB=90°,M是AA1的中點(diǎn),N是BC1的中點(diǎn)。

   (1)求證:MN∥平面A1B1C1

 
   (2)求點(diǎn)C1到平面BMC的距離

   (3)求二面角B-C1M—A的大小.

查看答案和解析>>

(本小題滿分13分)如圖,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點(diǎn).

(1)求二面角B—A1D—A的平面角余弦值;

(2)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?

若存在,確定其位置并證明結(jié)論;若不存在,說明理由.

查看答案和解析>>

 

一、選擇題

1―8  DAACA  CBD

二、填空題

9.    10.    11.    12.    13.50    14.5

三、解答題

15.(本小題滿分13分)

解:(1)由………………2分

整理得

……………………3分

……………………5分

又因?yàn)?sub>,

所以…………………………6分

(2)因?yàn)?sub>,所以

…………………………7分

,

所以.

.……………………11分

因?yàn)?sub>……………………12分

所以……………………13分

16.(本小題滿分13分)

解:(1)取AC的中點(diǎn)O,連結(jié)OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。又平面SAC⊥平面ABC,且平面SAC∩平面ABC=BC,

∴SO⊥平面ABC。

故SB在平面ABC內(nèi)的射影為OB。

∴AC⊥SB.……………………6分

(2)取OB的中點(diǎn)D,作NE⊥CM交GM于E,連結(jié)DE,ND。

在△SOB中,N、D分別為SB,OB的中點(diǎn),

∴DN//SO,又SO⊥平面ABC,

∴DN⊥平面ABC,由NE⊥CM得DE⊥CM。

故∠NED為二面角N―CM―B的平面角,………………9分

設(shè)OB與CM交于G,則G為△ABC的中心

DE⊥CM,BM⊥CM,

在△SAC中可得,

在△SOB中,ND=

在Rt△NDE中,

.

∴二面角N―CM―B的大小為……………………14分

解法二:(1)取AC的中點(diǎn)O,連結(jié)OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。

又平面SAC⊥平面ABC,

∴SO⊥平面ABC。

如圖建系為O―xyz。

則A(2,0,0),B(0,2

C(―2,0,0),S(0,0,),

M(1,),N(),

∴AC⊥SB.……………………6分

(2)由(1)得

設(shè)

為平面ABC的法向量,

       ∴二面角N-CM-B的大小為……………………………………………14分

17.(本小題滿分13分)

解:(Ⅰ)由題意C,A1,A2,A3四點(diǎn)構(gòu)成一個(gè)正三棱錐,CA1,CA2,CA3為該三棱錐

的三條側(cè)棱,………………………………………………………………2分

三棱錐的側(cè)棱……………………………………4分

于是有(0<x<2)……………………………5分

(Ⅱ)對(duì)y求導(dǎo)得……………………………………8分

=0得解得(舍),……10分

當(dāng)

故當(dāng)時(shí),即BC=1.5m時(shí),y取得最小值為6m!13分

18.(本小題滿分13分)

       解:(Ⅰ)記“恰好射擊5次引爆油罐”的事件為事件A,

……………………………………4分

(Ⅱ)射擊次數(shù)的可能取值為2,3,4,5!5分

=

=;

=;

=!11分

的分布列為

2

3

4

5

P

……………………………………………………………………………12分

     E=2×+3×+4×+5×=

故所求的數(shù)學(xué)期望為………………………………………………13分

19.(本小題滿分13分)

       解:(Ⅰ)由于四邊形OFPM是菱形,故

作雙曲線的右準(zhǔn)線交PM于點(diǎn)H。

…………………………………………………3分

所以離心率

整理得解得(舍)。

故所求雙曲線的離心率為2。……………………………………………5分

 

  •  

     

     

     

     

     

     

     

     

        (Ⅱ)由,又。

        雙曲線方程為。

       設(shè)P的橫坐標(biāo)為,由=a

           將其帶入雙曲線方程

           解得                                                                    7分

           ,故直線AB的方程為                                      8分

           將直線AB方程代入雙曲線方程                                  10分

           由

           解得,則

           所求雙曲線方程為                                                                       13分

    20.(本小題滿分14分)

           解:(1)當(dāng)時(shí),,所以

           兩邊取倒數(shù),得,即=-1,又

    所以數(shù)列是首項(xiàng)為―1,公差d= ―1的等差數(shù)列………………3分

    ,

    所以

    即數(shù)列的通項(xiàng)公式為……………………4分

    (2)根據(jù)題意,只需當(dāng)時(shí),方程有解,………………5分

    即方程有不等式a的解

    將x=a代入方程左邊,左邊為1,與右邊不相等。

    故方程不可能有解x=a!7分

    ,得.

    即實(shí)數(shù)a的取值范圍是……………………10分

    (3)假設(shè)存在實(shí)數(shù)a,使處取定義域中的任一實(shí)數(shù)值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{},

    那么根據(jù)題意可知,中無解,……………………12分

    即當(dāng)無實(shí)數(shù)解.

    由于的解。

    所以對(duì)任意無實(shí)數(shù)解,

    因此,

    故a= ―1即為所求a的值…………………………14分

     


    同步練習(xí)冊(cè)答案