1.已知集合的集合N的個數(shù)是 A.1 B.2 C.3 D.4 查看更多

 

題目列表(包括答案和解析)

已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)對于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)證明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)證明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個數(shù)中至少有一個是偶數(shù)
(Ⅲ)設(shè)P⊆Sn,P中有m(m≥2)個元素,記P中所有兩元素間距離的平均值為
.
d
(P)

證明:
.
d
(P)
mn
2(m-1)

查看答案和解析>>

已知集合A=a1,a2,…,an中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求證:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求證:n≤9;
(Ⅲ)對于n=9,試給出一個滿足條件的集合A.

查看答案和解析>>

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?

查看答案和解析>>

1、已知集合M={-1,1},則滿足N⊆M的集合N的個數(shù)是( 。

查看答案和解析>>

1、已知集合M={x||x|<3,x∈Z},N={x||x|≥1,x∈Z},則集合M∩N中元素的個數(shù)是(  )

查看答案和解析>>

 

一、選擇題

1―8  DAACA  CBD

二、填空題

9.    10.    11.    12.    13.50    14.5

三、解答題

15.(本小題滿分13分)

解:(1)由………………2分

整理得

……………………3分

……………………5分

又因為,

所以…………………………6分

(2)因為,所以

…………………………7分

,

所以.

.……………………11分

因為……………………12分

所以……………………13分

16.(本小題滿分13分)

解:(1)取AC的中點O,連結(jié)OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。又平面SAC⊥平面ABC,且平面SAC∩平面ABC=BC,

∴SO⊥平面ABC。

故SB在平面ABC內(nèi)的射影為OB。

∴AC⊥SB.……………………6分

(2)取OB的中點D,作NE⊥CM交GM于E,連結(jié)DE,ND。

在△SOB中,N、D分別為SB,OB的中點,

∴DN//SO,又SO⊥平面ABC,

∴DN⊥平面ABC,由NE⊥CM得DE⊥CM。

故∠NED為二面角N―CM―B的平面角,………………9分

設(shè)OB與CM交于G,則G為△ABC的中心

DE⊥CM,BM⊥CM,

在△SAC中可得,

在△SOB中,ND=

在Rt△NDE中,

.

∴二面角N―CM―B的大小為……………………14分

解法二:(1)取AC的中點O,連結(jié)OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。

又平面SAC⊥平面ABC,

∴SO⊥平面ABC。

如圖建系為O―xyz。

則A(2,0,0),B(0,2

C(―2,0,0),S(0,0,),

M(1,),N(),

∴AC⊥SB.……………………6分

(2)由(1)得

設(shè)

為平面ABC的法向量,

       ∴二面角N-CM-B的大小為……………………………………………14分

17.(本小題滿分13分)

解:(Ⅰ)由題意C,A1,A2,A3四點構(gòu)成一個正三棱錐,CA1,CA2,CA3為該三棱錐

的三條側(cè)棱,………………………………………………………………2分

三棱錐的側(cè)棱……………………………………4分

于是有(0<x<2)……………………………5分

(Ⅱ)對y求導(dǎo)得……………………………………8分

=0得解得(舍),……10分

當(dāng)

故當(dāng)時,即BC=1.5m時,y取得最小值為6m!13分

18.(本小題滿分13分)

       解:(Ⅰ)記“恰好射擊5次引爆油罐”的事件為事件A,

……………………………………4分

(Ⅱ)射擊次數(shù)的可能取值為2,3,4,5!5分

=;

=

=;

=!11分

的分布列為

2

3

4

5

P

……………………………………………………………………………12分

     E=2×+3×+4×+5×=

故所求的數(shù)學(xué)期望為………………………………………………13分

19.(本小題滿分13分)

       解:(Ⅰ)由于四邊形OFPM是菱形,故

作雙曲線的右準(zhǔn)線交PM于點H。

…………………………………………………3分

所以離心率

整理得解得(舍)。

故所求雙曲線的離心率為2!5分

 

      • <tbody id="op3fo"></tbody><listing id="op3fo"><b id="op3fo"></b></listing>

         

         

         

         

         

         

         

         

         

            (Ⅱ)由,又。

            雙曲線方程為

           設(shè)P的橫坐標(biāo)為,由=a

               將其帶入雙曲線方程

               解得                                                                    7分

               ,故直線AB的方程為                                      8分

               將直線AB方程代入雙曲線方程                                  10分

               由

               解得,則

               所求雙曲線方程為                                                                       13分

        20.(本小題滿分14分)

               解:(1)當(dāng)時,,所以

               兩邊取倒數(shù),得,即=-1,又

        所以數(shù)列是首項為―1,公差d= ―1的等差數(shù)列………………3分

        ,

        所以

        即數(shù)列的通項公式為……………………4分

        (2)根據(jù)題意,只需當(dāng)時,方程有解,………………5分

        即方程有不等式a的解

        將x=a代入方程左邊,左邊為1,與右邊不相等。

        故方程不可能有解x=a。……………………7分

        ,得.

        即實數(shù)a的取值范圍是……………………10分

        (3)假設(shè)存在實數(shù)a,使處取定義域中的任一實數(shù)值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{},

        那么根據(jù)題意可知,中無解,……………………12分

        即當(dāng)無實數(shù)解.

        由于的解。

        所以對任意無實數(shù)解,

        因此,

        故a= ―1即為所求a的值…………………………14分

         


        同步練習(xí)冊答案
      • <delect id="op3fo"></delect>