[解析].E(xE.0).F(xF.0).由A.C.F三點共線..xE=.同理.由B.C.F三點共線可得xF=.化簡.得點C的軌跡方程為x2+4y2-4. 查看更多

 

題目列表(包括答案和解析)

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內部,則z=-x+y的取值范圍是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的區(qū)域如圖,由圖象可知當直線經(jīng)過點B時,截距最大,此時,當直線經(jīng)過點C時,直線截距最小.因為軸,所以,三角形的邊長為2,設,則,解得,,因為頂點C在第一象限,所以,即代入直線,所以的取值范圍是,選A.

 

查看答案和解析>>


同步練習冊答案