題目列表(包括答案和解析)
已知橢圓=1(其中a>b>0)與直線x+y=1交于P、Q兩點,且OP⊥OQ,其中O為坐標原點.
(1)求的值;
(2)若橢圓的離心率e滿足≤e≤,求橢圓長軸的取值范圍.
探究:本題涉及直線與橢圓的交點,對于此類問題往往聯(lián)立它們的方程消去其中的一個未知數(shù),再利用根與系數(shù)間的關系,從而得到相應的兩個交點的坐標間的關系,再結合題目中的其它條件將問題解決.
如圖,分別是橢圓:+=1()的左、右焦點,是橢圓的頂點,是直線與橢圓的另一個交點,=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40,求的值.
【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。
(Ⅱ)因△的面積為40,設,又面積公式,又直線,
又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。
求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應給分
已知過點的動直線與拋物線相交于兩點.當直線的斜率是時,.
(1)求拋物線的方程;
(2)設線段的中垂線在軸上的截距為,求的取值范圍.
【解析】(1)B,C,當直線的斜率是時,
的方程為,即 (1’)
聯(lián)立 得, (3’)
由已知 , (4’)
由韋達定理可得G方程為 (5’)
(2)設:,BC中點坐標為 (6’)
得 由得 (8’)
BC中垂線為 (10’)
(11’)
過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.
(I)試證明兩點的縱坐標之積為定值;
(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設下證之:設直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關系以及發(fā)現(xiàn)問題和解決問題的能力.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com