解:(1)由橢圓方程及雙曲線方程可得點(diǎn)直線方程是 查看更多

 

題目列表(包括答案和解析)

關(guān)于函數(shù),有下列命題:

(1)由f(x1)=f(x2)=0,可得,x1-x2的整數(shù)倍;

(2)y=f(x)的表達(dá)式可改寫(xiě)為y=4cos(2x-);

(3)y=f(x)的圖象關(guān)于點(diǎn)(-,0)對(duì)稱;

(4)y=f(x)的圖象關(guān)于直線x=-對(duì)稱;

其中正確命題的序號(hào)是                 

 

查看答案和解析>>

關(guān)于函數(shù),有下列命題:
(1)由f(x1)=f(x2)=0,可得,x1-x2的整數(shù)倍;
(2)y=f(x)的表達(dá)式可改寫(xiě)為y=4cos(2x-);
(3)y=f(x)的圖象關(guān)于點(diǎn)(-,0)對(duì)稱;
(4)y=f(x)的圖象關(guān)于直線x=-對(duì)稱;
其中正確命題的序號(hào)是                 

查看答案和解析>>

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過(guò)點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

第一問(wèn)中,利用

第二問(wèn)中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

(2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線C2的公共點(diǎn),且△MF1F2的周長(zhǎng)為6,求橢圓C1的方程;
我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設(shè)過(guò)點(diǎn)F(1,0)的直線與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

寫(xiě)出由下述各命題構(gòu)成的“p或q”,“p且q”,“非p”形式的復(fù)合命題,并指出所構(gòu)成的這些復(fù)合命題的真假.
(1)p:5是17的約數(shù),q:5是15的約數(shù).
(2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1,
(3)p:不等式x2+2x+2>1的解集為R,q:不等式x2+2x+2≤1的解集為∅

查看答案和解析>>


同步練習(xí)冊(cè)答案