因?yàn)榍的橫坐標(biāo)范圍為.所以這樣的直線不存在.-----13分 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為

   點(diǎn)是曲線上的動(dòng)點(diǎn).

  (1)求線段的中點(diǎn)的軌跡的直角坐標(biāo)方程;

  (2) 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,若直線的極坐標(biāo)方程為,求點(diǎn)到直線距離的最大值.

【解析】第一問(wèn)利用設(shè)曲線上動(dòng)點(diǎn),由中點(diǎn)坐標(biāo)公式可得

所以點(diǎn)的軌跡的參數(shù)方程為

消參可得

第二問(wèn),由題可知直線的直角坐標(biāo)方程為,因?yàn)樵c(diǎn)到直線的距離為,

所以點(diǎn)到直線的最大距離為

 

查看答案和解析>>

某商場(chǎng)在促銷(xiāo)期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的80%出售;同時(shí),當(dāng)顧客在該商場(chǎng)內(nèi)消費(fèi)滿(mǎn)一定金額后,按如下方案相應(yīng)獲得第二次優(yōu)惠:
消費(fèi)金額(元)的范圍 [200,400) [400,500) [500,700) [700,900)
第二次優(yōu)惠金額(元) 30 60 100 150
根據(jù)上述促銷(xiāo)方法,顧客在該商場(chǎng)購(gòu)物可以獲得雙重優(yōu)惠.例如:購(gòu)買(mǎi)標(biāo)價(jià)為600元的商品,則消費(fèi)金額為480元,480∈[400,500),所以獲得第二次優(yōu)惠金額為60元,獲得的優(yōu)惠總額為:600×0.2+60=180(元).
設(shè)購(gòu)買(mǎi)商品的優(yōu)惠率=
購(gòu)買(mǎi)商品獲得的優(yōu)惠總額
商品的標(biāo)價(jià)

試問(wèn):(1)購(gòu)買(mǎi)一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)設(shè)顧客購(gòu)買(mǎi)標(biāo)價(jià)為x元(x∈[250,1000]) 的商品獲得的優(yōu)惠總額為y元,試建立y關(guān)于x的函數(shù)關(guān)系式;
(3)對(duì)于標(biāo)價(jià)在[625,800)(元)內(nèi)的商品,顧客購(gòu)買(mǎi)商品的標(biāo)價(jià)的取值范圍為多少時(shí),可得到不小于
1
3
的優(yōu)惠率?(取值范圍用區(qū)間表示)

查看答案和解析>>

(選做題)已知曲線C的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程是:
x=-
5
+
2
2
t
y=
5
+
2
2
t
(t為參數(shù)).
(Ⅰ)求曲線C的直角坐標(biāo)方程,直線l的普通方程;
(Ⅱ)將曲線C橫坐標(biāo)縮短為原來(lái)的
1
2
,再向左平移1個(gè)單位,得到曲線曲線C1,求曲線C1上的點(diǎn)到直線l距離的最小值.

查看答案和解析>>

設(shè)A、B是函數(shù)y= log2x圖象上兩點(diǎn), 其橫坐標(biāo)分別為a和a+4, 直線l: x=a+2與函數(shù)y= log2x圖象交于點(diǎn)C, 與直線AB交于點(diǎn)D。

(1)求點(diǎn)D的坐標(biāo);

(2)當(dāng)△ABC的面積等于1時(shí), 求實(shí)數(shù)a的值。

(3)當(dāng)時(shí),求△ABC的面積的取值范圍。

 

查看答案和解析>>

(選做題)已知曲線C的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程是:(t為參數(shù)).
(Ⅰ)求曲線C的直角坐標(biāo)方程,直線l的普通方程;
(Ⅱ)將曲線C橫坐標(biāo)縮短為原來(lái)的,再向左平移1個(gè)單位,得到曲線曲線C1,求曲線C1上的點(diǎn)到直線l距離的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案