也由余弦定理得 查看更多

 

題目列表(包括答案和解析)

如圖是單位圓上的點,分別是圓軸的兩交點,為正三角形.

(1)若點坐標(biāo)為,求的值;

(2)若,四邊形的周長為,試將表示成的函數(shù),并求出的最大值.

【解析】第一問利用設(shè) 

∵  A點坐標(biāo)為∴   ,

(2)中 由條件知  AB=1,CD=2 ,

中,由余弦定理得 

  ∴ 

∵       ∴    ,

∴  當(dāng)時,即 當(dāng) 時 , y有最大值5. .

 

查看答案和解析>>

中,,分別是角所對邊的長,,且

(1)求的面積;

(2)若,求角C.

【解析】第一問中,由又∵的面積為

第二問中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C為內(nèi)角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面積為           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C為內(nèi)角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

已知△的內(nèi)角所對的邊分別為.

 (1) 若, 求的值;

(2) 若△的面積 求的值.

【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運算求解能力。第一問中,得到正弦值,再結(jié)合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得,

 

查看答案和解析>>

已知向量=(),=(,),其中().函數(shù),其圖象的一條對稱軸為

(I)求函數(shù)的表達式及單調(diào)遞增區(qū)間;

(Ⅱ)在△ABC中,a、bc分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。

解:因為

由余弦定理得,……11分故

 

查看答案和解析>>

給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

解:(i)由余弦定理可得,

,

,

,

是直角三角形.

(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價于

,

是等腰三角形.

綜上可知,是等腰直角三角形.

請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結(jié)果.           .

 

查看答案和解析>>


同步練習(xí)冊答案