題目列表(包括答案和解析)
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。
(1)問中∵,∴,…………………1分
∵,得到三角關系是,結合,解得。
(2)由,解得,,結合二倍角公式,和,代入到兩角和的三角函數(shù)關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
在△中,∠,∠,∠的對邊分別是,且 .
(1)求∠的大;(2)若,,求和的值.
【解析】第一問利用余弦定理得到
第二問
(2) 由條件可得
將 代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) |
2 |
3 |
4 |
5 |
加工的時間y(小時) |
2.5 |
3 |
4 |
4.5 |
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關于x的線性回歸方程,并在坐標系中畫出回歸直線;
(3)試預測加工10個零件需要多少時間?
(注:)
【解析】第一問中利用數(shù)據(jù)描繪出散點圖即可
第二問中,由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回歸方程。
第三問中,將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時)得到結論。
(1)散點圖如下圖.
………………4分
(2)由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,
∴=…=0.7,=…=1.05.
∴=0.7x+1.05.回歸直線如圖中所示.………………8分
(3)將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時),
∴預測加工10個零件需要8.05小時
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com