去分母整理得 ----------------10分 查看更多

 

題目列表(包括答案和解析)

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

(2013•蘭州一模)某售報亭每天以每份0.4元的價格從報社購進若干份報紙,然后以每份1元的價格出售,如果當天賣不完,剩下的報紙以每份0.1元的價格賣給廢品收購站.
(Ⅰ)若售報亭一天購進280份報紙,求當天的利潤y(單位:元)關(guān)于當天需求量x(單位:份,x∈N)的函數(shù)解析式.
(Ⅱ)售報亭記錄了100天報紙的日需求量(單位:份),整理得下表:
日需求量x 240 250 260 270 280 290 300
 頻數(shù) 10 20 16 16 15 13 10
(1)假設售報亭在這100天內(nèi)每天購進280份報紙,求這100天的日利潤(單位:元)的平均數(shù);
(2)若售報亭一天購進280份報紙,以100天記錄的各需求量的頻率作為各銷售量發(fā)生的概率,求當天的利潤不超過150元的概率.

查看答案和解析>>

(2012•黑龍江)某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n 14 15 16 17 18 19 20
頻數(shù) 10 20 16 16 15 13 10
(i)假設花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

查看答案和解析>>

(2012•黑龍江)某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n 14 15 16 17 18 19 20
頻數(shù) 10 20 16 16 15 13 10
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.

查看答案和解析>>

某售報亭每天以每份0.4元的價格從報社購進若干份報紙,然后以每份1元的價格出售,如果當天賣不完,剩下的報紙以每份0.1元的價格賣給廢品收購站.
(Ⅰ)若售報亭一天購進280份報紙,求當天的利潤y(單位:元)關(guān)于當天需求量x(單位:份,x∈N)的函數(shù)解析式.
(Ⅱ)售報亭記錄了100天報紙的日需求量(單位:份),整理得下表:
日需求量x 240 250 260 270 280 290 300
 頻數(shù) 10 20 16 16 15 13 10
(1)假設售報亭在這100天內(nèi)每天購進280份報紙,求這100天的日利潤(單位:元)的平均數(shù);
(2)若售報亭一天購進280份報紙,以100天記錄的各需求量的頻率作為各銷售量發(fā)生的概率,求當天的利潤不超過150元的概率.

查看答案和解析>>


同步練習冊答案