②設(shè).為兩個定點.若.則動點的軌跡為雙曲線的一支, 查看更多

 

題目列表(包括答案和解析)

給出下列命題:
(1)設(shè)為兩個定點,為非零常數(shù),,則動點的軌跡為雙曲線;
(2)若等比數(shù)列的前項和,則必有
(3)若的最小值為2;
(4)雙曲線有相同的焦點;
(5)平面內(nèi)到定點(3,-1)的距離等于到定直線的距離的點的軌跡是拋物線.
其中正確命題的序號是               .

查看答案和解析>>

給出下列命題:
(1)設(shè)、為兩個定點,為非零常數(shù),,則動點的軌跡為雙曲線;
(2)若等比數(shù)列的前項和,則必有
(3)若的最小值為2;
(4)雙曲線有相同的焦點;
(5)平面內(nèi)到定點(3,-1)的距離等于到定直線的距離的點的軌跡是拋物線.
其中正確命題的序號是               .

查看答案和解析>>

以下關(guān)于圓錐曲線的命題中:

①設(shè)、為兩個定點,為非零常數(shù), ,則動點的軌跡為雙曲線;

②設(shè)過定圓上一定點,作圓的動點弦,為坐標(biāo)原點,若,則動點的軌跡為橢圓;

③方程的兩根可分別作為橢圓和雙曲線的離心率;

④雙曲線與橢圓有相同的焦點。其中真命題的序號是_________.(寫出所有真命題的序號)

 

查看答案和解析>>

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)為兩個定點,為非零常數(shù),,則動點的軌跡為雙曲線;
②過定圓上一定點作圓的動弦,為坐標(biāo)原點,若則動點的軌跡為橢圓;
③方程的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線有相同的焦點.
其中真命題的序號為        .(寫出所有真命題的序號)

查看答案和解析>>

以下四個關(guān)于圓錐曲線的命題中:

①設(shè)、為兩個定點,為非零常數(shù),,則動點的軌跡為雙曲線;

②過定圓上一定點作圓的動弦,為坐標(biāo)原點,若則動點的軌跡為橢圓;

③方程的兩根可分別作為橢圓和雙曲線的離心率;

④雙曲線有相同的焦點.

其中真命題的序號為         .(寫出所有真命題的序號)

 

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

二、填空題:

11. ;      12. ;          13. ;

14. ;            15. ;        16. ③ ④ .

三、解答題:

17.解:(1)在中,由,得,  又由正弦定理: 得:.                                     ……………………4分

(2)由余弦定理:得:,

,解得(舍去),所以.       ……8分

 

所以,

.                                      …………………12分

18.解:(1)依題意,雙曲線的方程可設(shè)為:、,

                解之得:,

所以雙曲線的方程為:.                  ……………………6分

(2)設(shè),直線軸交于點,此點即為雙曲線的右焦點,由   消去,得

此方程的,

所以、兩點分別在左、右支上,不妨設(shè)在左支、在右支上   ………9分

則由第二定義知:,,     …………11分

所以

,即. ………14分

(亦可求出的坐標(biāo),用兩點間距離公式求.)

 

19.(1)當(dāng)點的中點時,與平面平行.

∵在中,、分別為、的中點

   又平面,而平面 

    ∴∥平面.                              ……………………4分

 

(2)證明(略證):易證平面,又在平面內(nèi)的射影,,∴.                         ……………………8分

 (3)∵與平面所成的角是,∴,.

,連,則.     …………………10分

易知:,設(shè),則,,

中,

.                 ………14分

 

 

 

解法二:(向量法)(1)同解法一

(2)建立圖示空間直角坐標(biāo)系,則,                          ,.

設(shè),則

      ∴   (本小題4分)

(3)設(shè)平面的法向量為,由,

得:

依題意,∴,

.                             (本小題6分)

 

20.解:(1),

∴可設(shè)

因而   ①

  得          ②

∵方程②有兩個相等的根,

,即  解得 

由于,(舍去),將 代入 ①  得 的解析式.                                …………………6分

(2)=,

在區(qū)間內(nèi)單調(diào)遞減,

上的函數(shù)值非正,

由于,對稱軸,故只需,注意到,∴,得(舍去)

故所求a的取值范圍是.                     …………………11分

 (3)時,方程僅有一個實數(shù)根,即證方程 僅有一個實數(shù)根.令,由,得,,易知,上遞增,在上遞減,的極大值,的極小值,故函數(shù)的圖像與軸僅有一個交點,∴時,方程僅有一個實數(shù)根,得證.                                    ……………………16分

 

21.解:(1),                        ……………………1分

=.                      ……………………4分

(2),           ……………………5分

,………7分

∴數(shù)列為首項,為公比的等比數(shù)列.       ……………………8分

(3)由(2)知, Sn =, ……………9分

=∵0<<1,∴>0,,0<<1,,

,                                     ……………………11分

又當(dāng)時,,∴, ……………………13分

<.……14分

 


同步練習(xí)冊答案