8.設(shè)函數(shù).下列結(jié)論中正確的是 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù),下列結(jié)論中正確的是(    )

A.是函數(shù)的極小值點,是極大值點  

B.均是的極大值點

C.是函數(shù)的極小值點,函數(shù)無極大值     

D.函數(shù)無極值

 

 

查看答案和解析>>

 設(shè)函數(shù),則下列結(jié)論中正確的是(      )

f(x)的圖像關(guān)于直線對稱  ②f(x)的圖像關(guān)于點對稱

③把f(x)的圖像向左平移個單位,得到一個偶函數(shù)的圖像 ④f(x)在上為減函數(shù)

A. ①③                 B. ③④           C. ②③             D. ①④

 

查看答案和解析>>

已知函數(shù),下列結(jié)論中正確的是(     )

A.函數(shù)的最小正周期為 ;      B.函數(shù)的圖象關(guān)于直線對稱;

C.函數(shù)的圖象關(guān)于點()對稱;

D.函數(shù)內(nèi)是增函數(shù).

 

查看答案和解析>>

設(shè)向量 , 則下列結(jié)論中正確的是 (     )

A.           B.        C. 垂直       D.

 

查看答案和解析>>

設(shè)向量,,則下列結(jié)論中正確的是

   A.          B.         C.            D.

 

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本題滿分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

,.

18.(本題滿分12分)

解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.    

(Ⅱ)

19.(本題滿分12分)

  (Ⅰ)∵,∴{}是公差為4的等差數(shù)列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

設(shè)g(n)= ,∵g(n)= n∈N*上是減函數(shù),

g(n)的最大值是g(1)=5,

m>5,存在最小正整數(shù)m=6,使對任意n∈N*bn<成立

20.(本題滿分12分)

解法一:

(I)設(shè)的中點,連結(jié),則四邊形為正方形,

.故,,,即

學(xué)科網(wǎng)(Zxxk.Com),

平面,                                   

(II)由(I)知平面,

平面,,

的中點, 連結(jié),又,則

的中點,連結(jié),則,.

為二面角的平面角.

連結(jié),在中,,,

的中點,連結(jié),,

中,,,

二面角的余弦值為

解法二:

(I)以為原點,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,則,,,,.

學(xué)科網(wǎng)(Zxxk.Com),,

又因為 所以,平面.

(II)設(shè)為平面的一個法向量.

,

    取,則

,,設(shè)為平面的一個法向量,

,,得,則,

設(shè)的夾角為,二面角,顯然為銳角,

,

21.(本題滿分12分)    

解:(Ⅰ) ,上是增函數(shù),在上是減函數(shù),

∴當時, 取得極大值.

.

,,

則有 ,

遞增

極大值4

遞減

極小值0

遞增

所以,時,函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為.

(Ⅱ) 由(Ⅰ)知, ,的兩個根分別為. ∵上是減函數(shù),∴,即,

.

22.(本題滿分12分)

解:(I)依題意,可知,

 ,解得

∴橢圓的方程為

(II)直線與⊙相切,則,即,

,得

∵直線與橢圓交于不同的兩點設(shè)

,

,

       ∴

設(shè),則,

上單調(diào)遞增          ∴.

 

 

 


同步練習(xí)冊答案