取的中點, 連結.又.則. 查看更多

 

題目列表(包括答案和解析)

在正三棱錐S-ABC中,若SA=4,BC=3,分別取SA、BC的中點E、F,則EF=
 

查看答案和解析>>

用二分法求方程x3-2x-5=0在區(qū)間[2,3]上的實根,取區(qū)間中點x0=2.5,則下一個有根區(qū)間是( 。
A、[2,2.5]
B、[2.5,3]
C、[
5
2
,
11
4
]
D、以上都不對

查看答案和解析>>

用二分法求函數(shù)f(x)=x3-x-1在區(qū)間[1,2]內的根,取區(qū)間的中點x=1.5,則有一個根的區(qū)間是
(1,1.5)
(1,1.5)

查看答案和解析>>

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、

PC的中點.

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大小.

【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用

第一問中,利用連AC,設AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內的射影       ∴ CD⊥EF.

第三問中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

 

用二分法求函數(shù)在區(qū)間上零點的近似解,經(jīng)驗證有.取區(qū)間的中點,計算得,則此時零點   ★    (填區(qū)間)

 

查看答案和解析>>


同步練習冊答案