題目列表(包括答案和解析)
|
2 |
π |
4 |
7 |
5 |
7 |
5 |
x2+2x-3 | -x2+x+6 |
解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此
解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)
(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱(chēng)有一個(gè)巧合,求巧合數(shù)的分布列。
解:能否投中,那得看拋物線與籃圈所在直線是否有交點(diǎn)。因?yàn)楹瘮?shù)的零點(diǎn)是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開(kāi)口向下的,所以投不中。
某城市出租汽車(chē)的起步價(jià)為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車(chē)費(fèi)若行駛路程超出4km,則按每超出lkm加收2元計(jì)費(fèi)(超出不足1km的部分按lkm計(jì)).從這個(gè)城市的民航機(jī)場(chǎng)到某賓館的路程為15km.某司機(jī)常駕車(chē)在機(jī)場(chǎng)與此賓館之間接送旅客,由于行車(chē)路線的不同以及途中停車(chē)時(shí)間要轉(zhuǎn)換成行車(chē)路程(這個(gè)城市規(guī)定,每停車(chē)5分鐘按lkm路程計(jì)費(fèi)),這個(gè)司機(jī)一次接送旅客的行車(chē)路程ξ是一個(gè)隨機(jī)變量,
(1)他收旅客的租車(chē)費(fèi)η是否也是一個(gè)隨機(jī)變量?如果是,找出租車(chē)費(fèi)η與行車(chē)路程ξ的關(guān)系式;
(2)已知某旅客實(shí)付租車(chē)費(fèi)38元,而出租汽車(chē)實(shí)際行駛了15km,問(wèn)出租車(chē)在途中因故停車(chē)?yán)塾?jì)最多幾分鐘?這種情況下,停車(chē)?yán)塾?jì)時(shí)間是否也是一個(gè)隨機(jī)變量?
.(本題滿(mǎn)分14分)
已知函數(shù) (為自然對(duì)數(shù)的底數(shù)).
(1)求的最小值;
(2)不等式的解集為,若且求實(shí)數(shù)的取值范圍;
(3)已知,且,是否存在等差數(shù)列和首項(xiàng)為公比大于0的等比數(shù)列,使得?若存在,請(qǐng)求出數(shù)列的通項(xiàng)公式.若不存在,請(qǐng)說(shuō)明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com