(Ⅰ)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,E的左頂點(diǎn)為A、上頂點(diǎn)為B,點(diǎn)P在橢圓上,且△PF1F2的周長(zhǎng)為4+2
3

精英家教網(wǎng)
(I)求橢圓的方程;
(II)設(shè)C,D是橢圓E上兩不同點(diǎn),CD∥AB,直線CD與x軸、y軸分別交于M,N兩點(diǎn),且
MC
CN
MD
DN
,求λ+μ
的取值范圍.

查看答案和解析>>

(2012•濟(jì)南二模)已知橢圓的焦點(diǎn)坐標(biāo)為F1(-1,0),F(xiàn)2(1,0),過F2垂直于長(zhǎng)軸的直線交橢圓于P、Q兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點(diǎn)M、N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),A是橢圓上位于第一象限的一點(diǎn),B也在橢圓上,且滿足
OA
+
OB
=
0
(O為坐標(biāo)原點(diǎn)),
AF2
F1F2
=0,且橢圓的離心率為
2
2

(1)求直線AB的方程;
(2)若△ABF2的面積為4
2
,求橢圓的方程.

查看答案和解析>>

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
短軸長(zhǎng)為2,P(x0,y0)(x0≠±a)是橢圓上一點(diǎn),A,B分別是橢圓的左、右頂點(diǎn),直線PA,PB的斜率之積為-
1
4

(1)求橢圓的方程;
(2)當(dāng)∠F1PF2為鈍角時(shí),求P點(diǎn)橫坐標(biāo)的取值范圍;
(3)設(shè)F1,F(xiàn)2分別是橢圓的左右焦點(diǎn),M、N是橢圓右準(zhǔn)線l上的兩個(gè)點(diǎn),若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

已知橢圓的對(duì)稱軸為坐標(biāo)軸,離心率e=
2
3
,短軸長(zhǎng)為8
5
,求橢圓的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案